scholarly journals Cecal ligation and puncture accelerates development of ventilator-induced lung injury

2015 ◽  
Vol 308 (5) ◽  
pp. L443-L451 ◽  
Author(s):  
Nadir Yehya ◽  
Yi Xin ◽  
Yousi Oquendo ◽  
Maurizio Cereda ◽  
Rahim R. Rizi ◽  
...  

Sepsis is a leading cause of respiratory failure requiring mechanical ventilation, but the interaction between sepsis and ventilation is unclear. While prior studies demonstrated a priming role with endotoxin, actual septic animal models have yielded conflicting results regarding the role of preceding sepsis on development of subsequent ventilator-induced lung injury (VILI). Using a rat cecal ligation and puncture (CLP) model of sepsis and subsequent injurious ventilation, we sought to determine if sepsis affects development of VILI. Adult male Sprague-Dawley rats were subject to CLP or sham operation and, after 12 h, underwent injurious mechanical ventilation (tidal volume 30 ml/kg, positive end-expiratory pressure 0 cmH2O) for either 0, 60, or 120 min. Biochemical and physiological measurements, as well as computed tomography, were used to assess injury at 0, 60, and 120 min of ventilation. Before ventilation, CLP rats had higher levels of alveolar neutrophils and interleukin-1β. After 60 min of ventilation, CLP rats had worse injury as evidenced by increased alveolar inflammation, permeability, respiratory static compliance, edema, oxygenation, and computed tomography. By 120 min, CLP and sham rats had comparable levels of lung injury as assessed by many, but not all, of these metrics. CLP rats had an accelerated and worse loss of end-expiratory lung volume relative to sham, and consistently higher levels of alveolar interleukin-1β. Loss of aeration and progression of edema was more pronounced in dependent lung regions. We conclude that CLP initiated pulmonary inflammation in rats, and accelerated the development of subsequent VILI.

2017 ◽  
Vol 312 (4) ◽  
pp. F654-F660 ◽  
Author(s):  
Mark Hepokoski ◽  
Joshua A. Englert ◽  
Rebecca M. Baron ◽  
Laura E. Crotty-Alexander ◽  
Mark M. Fuster ◽  
...  

In critical illness, such as sepsis or the acute respiratory distress syndrome, acute kidney injury (AKI) is common and associated with increased morbidity and mortality. Mechanical ventilation in critical illnesses is also a risk factor for AKI, but it is potentially modifiable. Injurious ventilation strategies may lead to the systemic release of inflammatory mediators from the lung due to ventilator induced lung injury (VILI). The systemic consequences of VILI are difficult to differentiate clinically from other systemic inflammatory syndromes, such as sepsis. The purpose of this study was to identify unique changes in the expression of inflammatory mediators in kidney tissue in response to VILI compared with systemic sepsis to gain insight into direct effects of VILI on the kidney. Four groups of mice were compared—mice with sepsis from cecal ligation and puncture (CLP), mice subjected to injurious mechanical ventilation with high tidal volumes (VILI), mice exposed to CLP followed by VILI (CLP+VILI), and sham controls. Protein expression of common inflammatory mediators in kidneys was analyzed using a proteome array and confirmed by Western blot analysis or ELISA. VEGF and VCAM-1 were found to be significantly elevated in kidneys from VILI mice compared with sham and CLP. Angiopoietin-2 was significantly increased in CLP+VILI compared with CLP alone and was also correlated with higher levels of AKI biomarker, neutrophil gelatinase-associated lipocalin. These results suggest that VILI alters the renal expression of VEGF, VCAM-1, and angiopoietin-2, and these proteins warrant further investigation as potential biomarkers and therapeutic targets.


2009 ◽  
Vol 111 (6) ◽  
pp. 1317-1326 ◽  
Author(s):  
Brendan D. Higgins ◽  
Joseph Costello ◽  
Maya Contreras ◽  
Patrick Hassett ◽  
Daniel O' Toole ◽  
...  

Background Acute hypercapnic acidosis protects against lung injury caused by nonseptic insults and after both pulmonary and systemic sepsis. The authors wished to dissect the contribution of the acidosis versus hypercapnia per se to the effects of hypercapnic acidosis on the hemodynamic profile and severity of lung injury induced by systemic sepsis. Methods In the hypercapnic acidosis series, adult male Sprague-Dawley rats were randomized to normocapnia or hypercapnic acidosis-produced by adding 5% carbon dioxide to the inspired gas-and cecal ligation and puncture performed. In the buffered hypercapnia series, animals were first randomized to housing under conditions of environmental normocapnia or hypercapnia-produced by exposure to 8% carbon dioxide-to allow renal buffering. After 96 h, cecal ligation and puncture was performed. In both series, the animals were ventilated for 6 h, and the severity of the lung injury and hemodynamic deterioration were assessed. Results Both hypercapnic acidosis and buffered hypercapnia attenuated the development and severity of hypotension and reduced lactate accumulation compared to normocapnia. Hypercapnic acidosis reduced lung injury and inflammation, decreased mean (+ or - SD) bronchoalveolar lavage protein concentration (232 + or - 50 versus 279 + or - 27 microg x ml(-1)) and median neutrophil counts (3,370 versus 9,120 cells x ml(-1)), and reduced histologic lung injury. In contrast, buffered hypercapnia did not reduce the severity of systemic sepsis induced lung injury. Conclusions Both hypercapnic acidosis and buffered hypercapnia attenuate the hemodynamic consequences of systemic sepsis. In contrast, hypercapnic acidosis, but not buffered hypercapnia, reduced the severity of sepsis-induced lung injury.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yang Zhang ◽  
Lulu Jiang ◽  
Tianfeng Huang ◽  
Dahao Lu ◽  
Yue Song ◽  
...  

Abstract Background Mechanical ventilation can induce or aggravate lung injury, which is termed ventilator-induced lung injury (VILI). Piezo1 is a key element of the mechanotransduction process and can transduce mechanical signals into biological signals by mediating Ca2+ influx, which in turn regulates cytoskeletal remodeling and stress alterations. We hypothesized that it plays an important role in the occurrence of VILI, and investigated the underlying mechanisms. Methods High tidal volume mechanical ventilation and high magnitude cyclic stretch were performed on Sprague–Dawley rats, and A549 and human pulmonary microvascular endothelial cells, respectively, to establish VILI models. Immunohistochemical staining, flow cytometry, histological examination, enzyme-linked immunosorbent assay, western blotting, quantitative real-time polymerase chain reaction and survival curves were used to assess the effect of Piezo1 on induction of lung injury, as well as the signaling pathways involved. Results We observed that Piezo1 expression increased in the lungs after high tidal volume mechanical ventilation and in cyclic stretch-treated cells. Mechanistically, we observed the enhanced expression of RhoA/ROCK1 in both cyclic stretch and Yoda1-treated cells, while the deficiency or inhibition of Piezo1 dramatically antagonized RhoA/ROCK1 expression. Furthermore, blockade of RhoA/ROCK1 signaling using an inhibitor did not affect Piezo1 expression. GSMTx4 was used to inhibit Piezo1, which alleviated VILI-induced pathologic changes, water content and protein leakage in the lungs, and the induction of systemic inflammatory mediators, and improved the 7-day mortality rate in the model rats. Conclusions These findings indicate that Piezo1 affects the development and progression of VILI through promotion of RhoA/ROCK1 signaling.


2021 ◽  
Author(s):  
Yang Zhang ◽  
Lulu Jiang ◽  
Tianfeng Huang ◽  
Dahao Lu ◽  
Yue Song ◽  
...  

Abstract Background: Mechanical ventilation can induce or aggravate lung injury, which is termed ventilator‑induced lung injury. Piezo1 is a key element of the mechanotransduction process and can transduce mechanical signals into biological signals by mediating Ca2+ influx, which in turn regulates cytoskeletal remodeling and stress alterations. We hypothesized that it plays an important role in the occurrence of ventilator‑induced lung injury, and we investigated the underlying mechanisms. Methods: High tidal volume mechanical ventilation and high magnitude cyclic stretch were performed on Sprague Dawley rats, and A549 and human pulmonary microvascular endothelial cells, respectively, to establish ventilator‑induced lung injury models. Immunohistochemical staining, flow cytometry, histological examination, enzyme-linked immunosorbent assay, western blotting, quantitative real-time reverse transcription-PCR and survival curves were used to assess the effect of Piezo1 on induction of lung injury, as well as the signaling pathways involved.Results: We observed that Piezo1 expression increased in the lungs after high tidal volume mechanical ventilation and in cyclic stretch-treated cells. Mechanistically, we observed the enhanced expression of RhoA/ROCK1 in both cyclic stretch and Yoda1-treated cells, while the deficiency or inhibition of Piezo1 dramatically antagonized RhoA/ROCK1 expression. Furthermore, blockade of RhoA/ROCK1 signaling using an inhibitor did not affect Piezo1 expression. GSMTx4 was used to inhibit Piezo1, which alleviated ventilator‑induced lung injury-induced pathologic changes, water content and protein leakage in the lungs, and the induction of systemic inflammatory mediators, and improved the 7-day mortality rate in the model rats. Conclusions: These findings indicate that Piezo1 affects the development and progression of ventilator‑induced lung injury through promotion of RhoA/ROCK1 signaling.


2020 ◽  
Vol 18 (2) ◽  
pp. 201-206
Author(s):  
Qiu Nan ◽  
Xu Xinmei ◽  
He Yingying ◽  
Fan Chengfen

Sepsis, with high mortality, induces deleterious organ dysfunction and acute lung injury. Natural compounds show protective effect against sepsis-induced acute lung injury. Juglone, a natural naphthoquinone, demonstrates pharmacological actions as a pro-apoptotic substrate in tumor treatment and anti-inflammation substrate in organ injury. In this study, the influence of juglone on sepsis-induced acute lung injury was investigated. First, a septic mice model was established via cecal ligation and puncture, and then verified via histopathological analysis of lung tissues, the wet/dry mass ratio and myeloperoxidase activity was determined. Cecal ligation and puncture could induce acute lung injury in septic mice, as demonstrated by alveolar damage and increase of wet/dry mass ratio and myeloperoxidase activity. However, intragastric administration juglone attenuated cecal ligation and puncture-induced acute lung injury. Secondly, cecal ligation and puncture-induced increase of inflammatory cells in bronchoalveolar lavage fluid was also alleviated by the administration of juglone. Similarly, the protective effect of juglone against cecal ligation and puncture-induced acute lung injury was accompanied by a reduction of pro-inflammatory factor secretion in bronchoalveolar lavage fluid and lung tissues. Cecal ligation and puncture could activate toll-like receptor 4/nuclear factor-kappa B signaling pathway, and administration of juglone suppressed toll-like receptor 4/nuclear factor-kappa B activation. In conclusion, juglone attenuated cecal ligation and puncture-induced lung damage and inflammatory response through inactivation of toll-like receptor 4/nuclear factor-kappa B, suggesting a potential therapeutic strategy in the treatment of sepsis-induced acute lung injury.


2019 ◽  
Vol 18 (2) ◽  
pp. 176-182
Author(s):  
Chen Weiyan ◽  
Deng Wujian ◽  
Chen Songwei

Acute lung injury is a clinical syndrome consisting of a wide range of acute hypoxemic respiratory failure disorders. Sepsis is a serious complication caused by an excessive immune response to pathogen-induced infections, which has become a major predisposing factor for acute lung injury. Taxifolin is a natural flavonoid that shows diverse therapeutic benefits in inflammation- and oxidative stress-related diseases. In this study, we investigated the role of taxifolin in a mouse model of cecal ligation and puncture-induced sepsis. Cecal ligation and puncture-operated mice presented damaged alveolar structures, thickened alveolar walls, edematous septa, and hemorrhage compared to sham-treated controls. Cecal ligation and puncture mice also showed increased wet-to-dry (W/D) lung weight ratio and elevated total protein concentration and lactate dehydrogenase level in bronchoalveolar lavage fluid. Taxifolin treatment protected animals against sepsis-induced pulmonary damage and edema. Septic mice presented compromised antioxidant capacity, whereas the administration of taxifolin prior to cecal ligation and puncture surgery decreased malondialdehyde concentration and enhanced the levels of reduced glutathione and superoxide dismutase in mice with sepsis-induced acute lung injury. Moreover, cecal ligation and puncture-operated mice showed markedly higher levels of proinflammatory cytokines relative to sham-operated group, while taxifolin treatment effectively mitigated sepsis-induced inflammation in mouse lungs. Further investigation revealed that taxifolin suppressed the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway in cecal ligation and puncture-challenged mice by regulating the phosphorylation of p65 and IκBα. In conclusion, our study showed that taxifolin alleviated sepsis-induced acute lung injury via the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway, suggesting the therapeutic potential of taxifolin in the treatment sepsis-induced acute lung injury.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2258
Author(s):  
Won-Gun Kwack ◽  
Yoon-Je Lee ◽  
Eun-Young Eo ◽  
Jin-Haeng Chung ◽  
Jae-Ho Lee ◽  
...  

Ventilator-induced lung injury (VILI) is an important critical care complication. Nuclear factor-κB (NF-κB) activation, a critical signaling event in the inflammatory response, has been implicated in the tracking of the lung injury. The present study aimed to determine the effect of simultaneous pretreatment with enteral aspirin and omega-3 fatty acid on lung injury in a murine VILI model. We compared the lung inflammation after the sequential administration of lipopolysaccharides and mechanical ventilation between the pretreated simultaneous enteral aspirin and omega-3 fatty acid group and the non-pretreatment group, by quantifying NF-κB activation using an in vivo imaging system to detect bioluminescence signals. The pretreated group with enteral aspirin and omega-3 fatty acid exhibited a smaller elevation of bioluminescence signals than the non-pretreated group (p = 0.039). Compared to the non-pretreated group, the pretreatment group with simultaneous enteral aspirin and omega-3 fatty acid showed reduced expression of the pro-inflammatory cytokine, tumor necrosis factor-α, in bronchoalveolar lavage fluid (p = 0.038). Histopathological lung injury scores were also lower in the pretreatment groups compared to the only injury group. Simultaneous pretreatment with enteral administration of aspirin and omega-3 fatty acid could be a prevention method for VILI in patients with impending mechanical ventilation therapy.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ioanna Nikitopoulou ◽  
Ioanna Ninou ◽  
Nikolaos Manitsopoulos ◽  
Ioanna Dimopoulou ◽  
Stylianos E. Orfanos ◽  
...  

Abstract Background The pathophysiology of acute respiratory distress syndrome (ARDS) may eventually result in heterogeneous lung collapse and edema-flooded airways, predisposing the lung to progressive tissue damage known as ventilator-induced lung injury (VILI). Autotaxin (ATX; ENPP2), the enzyme largely responsible for extracellular lysophosphatidic acid (LPA) production, has been suggested to play a pathogenic role in, among others, pulmonary inflammation and fibrosis. Methods C57BL/6 mice were subjected to low and high tidal volume mechanical ventilation using a small animal ventilator: respiratory mechanics were evaluated, and plasma and bronchoalveolar lavage fluid (BALF) samples were obtained. Total protein concentration was determined, and lung histopathology was further performed Results Injurious ventilation resulted in increased BALF levels of ATX. Genetic deletion of ATX from bronchial epithelial cells attenuated VILI-induced pulmonary edema. Conclusion ATX participates in VILI pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document