scholarly journals Publishing flow cytometry data

2010 ◽  
Vol 298 (2) ◽  
pp. L127-L130 ◽  
Author(s):  
D. F. Alvarez ◽  
K. Helm ◽  
J. DeGregori ◽  
M. Roederer ◽  
S. Majka

Cellular measurements by flow cytometric analysis constitute an important step toward understanding individual attributes within a population of cells. Assessing individual cells within a population by protein expression using fluorescently labeled antibodies and other fluorescent probes can identify cellular patterns. The technology for accurately identifying subtle changes in protein expression within a population of cells using a vast array of technology has resulted in controversy and questions regarding reproducibility, which can be explained at least in part by the absence of standard methods to facilitate comparison of flow cytometric data. The complexity of technological advancements and the need for improvements in biological resolution results in the generation of complex data that demands the use of minimum standards for their publication. Herein we present a summarized view for the inclusion of consistent flow cytometric experimental information as supplemental data. Four major points, experimental and sample information, data acquisition, analysis, and presentation are emphasized. Together, these guidelines will facilitate the review and publication of flow cytometry data that provide an accurate foundation for ongoing studies with this evolving technology.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4771-4771
Author(s):  
Magali Le Garff-Tavernier ◽  
Michel Ticchioni ◽  
Rémi Letestu ◽  
Martine Brissard ◽  
Frédéric Davi ◽  
...  

Abstract Background : Expression of ZAP-70 protein has been shown to be correlated with mutational status of immunoglobulin heavy-chain variable region (IgVH) genes, a major prognostic factor in CLL. We investigated whether the detection of ZAP-70 protein by flow cytometric analysis using unconjugated and conjugated monoclonal antibodies (mAbs) could be applied securely in the workup of patients with CLL. Methods: Flow cytometric analysis of ZAP-70 protein was performed using the method described by Crespo et al (N Engl J Med2003;348:1764) with minor modifications. Both fresh and cryopreserved mononuclear cells from CLL patients and healthy donors were fixed and permeabilized using Fix and Perm kit (Caltag Laboratories), incubated with anti-ZAP-70 mAb (clone 2F3.2, Upstate Biotechnology) and then revealed with goat antimouse FITC mAb (Immunotech). Finally cells were incubated with CD3-APC, CD56-APC and CD19-PC5. We also tested 3 mAbs conjugated to various fluorochromes: 2F3.2-FITC (Upstate), 1E7.2-PE (eBioscience), 1E7.2-PE or -Alexa 488 (Caltag). ZAP-70 protein detection in B-cells was expressed either as a percentage of its expression in the T and NK-cells or as a ratio (R) of T-cell mean cell fluorescence (MCF) to B-cell MCF. Western blotting of protein lysates from purified B-cells was carried out to control results obtained by cytometry in 55 samples. Mutational status was defined using a cutoff of 98%. Results: In 13 healthy donors, the mean percentage of ZAP-70 protein expression obtained by flow cytometry with unconjugated mAb (clone 2F3.2) was 4.69% ± 1.93 [range 2–9%] and the R ratio was 6.64 ± 1.54 and > 4.8. In 83 B-CLL samples, ZAP-70 expression was determined using the same method and compared to IgVH mutational status. Results in table below show a 75% concordance between gene mutations and ZAP-70 expression when considering a percentage of positive B-cells > 20%. A better concordance (81%) is obtained with a threshold T-cell MCF/ B-cell MCF at 4 determined by Youden’s index. To note the high concordance (90%) between unmutated status and ZAP-70 + expression (19/21). Comparison with at least 1 of the 3 conjugated mAbs has been performed for 63 samples, with discordant results in our laboratories. 62 mutated IgVH samples 21 unmutated IgVH samples ZAP-70 B-Cells + ≤ 20 % : 43 > 20% : 19 T-cell MCF/B-cell MCF ≥ 4 : 48 < 4 : 19 Conclusions: Our data document the concordance between IgVH gene mutational status and ZAP-70 protein expression measured by flow cytometry, particularly in ZAP-70 negative samples. We found that the indirect method of labelling with unconjugated anti-ZAP-70 mAb remains until now, in our hands, the gold standard method compared to the available dyes conjugate mAbs.


1979 ◽  
Vol 27 (1) ◽  
pp. 463-469 ◽  
Author(s):  
L A Dethlefsen ◽  
R M Riley ◽  
J L Roti Roti

The effects of a single intraperitoneal injection of adriamycin (10 mg/kg) on a fast-growing C3H mouse mammary tumor (S102F) have been analyzed volumetrically, biochemically, autoradiographically and flow cytometrically. Mathematical simulation of the data was also used to aid in the interpretation of the recovery kinetics. This dose of adriamycin did not induce regression in tumor volume but did inhibit the growth rate for 4-5 days. 3H-TdR incorporation was gradually inhibited to reach a low of 20% of control at 24 and 36 hr and then recovered back to control by 96 hr after adriamycin treatment. The flow cytometric analysis also showed a marked reduction in the relative fraction of cells in the S-phase with a minimum of 23% of control at 72 hr; however, in contrast to the 3H-TdR incorporation data, the fraction of cells in the S-phase was only at 39% of control at 96 hr after the adriamycin injection. Since the 3H-TdR incorporation data disagreed with the flow cytometry data, autoradiographic analysis was also done at selected times after the adriamycin injections, and qualitatively, this analysis confirms the flow cytometry data in that the labeling index was 29% of control at 96 hr after adriamycin. The mitotic index also dropped from 8 to 1%, respectively, for controls and at 96 hr posttreatment. The degenerate index was about 1% in control tumors and no increase was observed in treated tumors. Adriamycin-induced cell-cycle delay occurs predominately in G1 and G2 but there is also an apparent minor delay in the transit across the S-phase and some apparent cytotoxicity in G2 and/or M. The long delay in volumetric growth appears to be due to the extended cell-cycle delay rather than extensive cell killing.


2000 ◽  
Vol 44 (4) ◽  
pp. 827-834 ◽  
Author(s):  
David J. Novo ◽  
Nancy G. Perlmutter ◽  
Richard H. Hunt ◽  
Howard M. Shapiro

ABSTRACT Although flow cytometry has been used to study antibiotic effects on bacterial membrane potential (MP) and membrane permeability, flow cytometric results are not always well correlated to changes in bacterial counts. Using new, precise techniques, we simultaneously measured MP, membrane permeability, and particle counts of antibiotic-treated and untreated Staphylococcus aureus andMicrococcus luteus cells. MP was calculated from the ratio of red and green fluorescence of diethyloxacarbocyanine [DiOC2(3)]. A normalized permeability parameter was calculated from the ratio of far red fluorescence of the nucleic acid dye TO-PRO-3 and green DiOC2(3) fluorescence. Bacterial counts were calculated by the addition of polystyrene beads to the sample at a known concentration. Amoxicillin increased permeability within 45 min. At concentrations of <1 μg/ml, some organisms showed increased permeability but normal MP; this population disappeared after 4 h, while bacterial counts increased. At amoxicillin concentrations above 1 μg/ml, MP decreased irreversibly and the particle counts did not increase. Tetracycline and erythromycin caused smaller, dose- and time-dependent decreases in MP. Tetracycline concentrations of <1 μg/ml did not change permeability, while a tetracycline concentration of 4 μg/ml permeabilized 50% of the bacteria; 4 μg of erythromycin per ml permeabilized 20% of the bacteria. Streptomycin decreased MP substantially, with no effect on permeability; chloramphenicol did not change either permeability or MP. Erythromycin pretreatment of bacteria prevented streptomycin and amoxicillin effects. Flow cytometry provides a sensitive means of monitoring the dynamic cellular events that occur in bacteria exposed to antibacterial agents; however, it is probably simplistic to expect that changes in a single cellular parameter will suffice to determine the sensitivities of all species to all drugs.


2019 ◽  
Vol 15 (11) ◽  
Author(s):  
Thays Saynara Alves Menezes-Sá ◽  
Maria de Fátima Arrigoni-Blank ◽  
Andréa Santos da Costa ◽  
Janay De Almeida Santos-Serejo ◽  
Arie Fitzgerald Blank ◽  
...  

Chromosome doubling induction in orchids may benefit their production for resulting in flowers of higher commercial value, larger size and higher content of substances that intensify the color and fragrance when compared with diploid orchids. This work aimed to induce and confirm artificial polyploidization, using flow cytometry and stomatal analysis. Explants were treated with colchicine at concentrations of 0, 2.5, 7.5, and 12.5 mM, for 24 and 48 hours and with oryzalin, at concentrations of 0, 10, 30, and 50 μM, for three and six days. For the flow cytometric analysis, a sample of leaf tissue was removed from each plant, crushed to release the nuclei and stained with propidium iodide. In addition to flow cytometry, the ploidy of the antimitotic treated plants was evaluated by stomata analysis. Young leaves were used where the density, functionality and stomatal index were evaluated. Colchicine provided induction of satisfactory polyploidy in C. tigrina at all concentrations and times of exposure, obtaining a greater number of polyploid individuals in the concentration of 12.5 mM for 48 hours. Oryzalin did not induce chromosome duplication at the tested concentrations.


2019 ◽  
Vol 152 (4) ◽  
pp. 471-478
Author(s):  
Scott R Gilles ◽  
Sophia L Yohe ◽  
Michael A Linden ◽  
Michelle Dolan ◽  
Betsy Hirsch ◽  
...  

AbstractObjectivesCD161 (NKRP1) is a lectin-like receptor present on NK cells and rare T-cell subsets. We have observed CD161 expression in some cases of T-cell prolymphocytic leukemia (T-PLL) and found it to be useful in follow-up and detection of disease after treatment.MethodsRetrospective review of T-PLL cases with complete flow cytometry data including CD161.ResultsWe identified 10 cases of T-PLL with flow cytometric evaluation of CD161 available. Six of these cases were positive for CD161 expression. All CD161-positive cases were positive for CD8 with variable CD4 expression, whereas all CD161-negative cases were negative for CD8. In a case with two neoplastic subsets positive and negative for CD8, only the former expressed CD161.ConclusionsThese novel results suggest that CD161 is often aberrantly expressed in a defined subset of T-PLL positive for CD8. We are showing the utility of this immunophenotype in diagnosis and follow-up.


1997 ◽  
Vol 41 (12) ◽  
pp. 2686-2692 ◽  
Author(s):  
I Pavić ◽  
A Hartmann ◽  
A Zimmermann ◽  
D Michel ◽  
W Hampl ◽  
...  

We established a quantitative flow cytometric method for determination of herpes simplex virus type 1 (HSV-1) susceptibility to acyclovir (ACV), ganciclovir, and foscarnet in vitro. Susceptibility was defined in terms of the drug concentration which reduced the number of cells expressing HSV-1 glycoprotein C (gpC) with a fluorescence intensity of > or =10(2) by 50% (IC50). Flow cytometry allowed us to use a high (1.0) as well as a low (0.005) multiplicity of infection, and determination of the IC50 was possible after one or more viral replicative cycles. IC50s were dependent on virus input and on time postinfection. In mixture experiments, 1 to 2% resistant viruses added to a sensitive strain could be detected. The results obtained by flow cytometry showed a good qualitative correlation with those achieved by cytopathic effect inhibitory assay. However, flow cytometry might detect more quantitative differences in drug susceptibility, especially among resistant strains, as confirmed also by determination of intracellular drug phosphorylation. The mean IC50s for ACV-sensitive strains were 0.45 to 1.47 microM, and those for ACV-resistant strains were between 140 and 3,134 microM. Flow cytometric analysis was fast and accurate, automatizable, and highly reproducible. Flow cytometry may be a more powerful tool than standard cytopathic effect-based assays and could have advantages for the detection of low levels of drug resistance or mixtures of sensitive and resistant virus strains.


Author(s):  
Nicole L. Patten ◽  
Justin R. Seymour ◽  
James G. Mitchell

Using flow cytometry, two distinct populations of virus-like particles (VLP) and heterotrophic bacteria were defined within the 12 cm water layer immediately overlying healthy, diseased and dead acroporid corals. Bacterial abundances were similar in overlying water for all coral types, however, VLP were 30% higher above diseased corals than healthy or dead corals. Mean virus to bacteria ratios (VBR) were up to 30% higher above diseased corals than above healthy or dead coral or in distant water. Concomitant with increasing VLP concentrations within 5 cm of coral surfaces, VBR distributions were generally highest above healthy and diseased coral and depressed above dead coral. These results suggest fundamental shifts in the VLP and bacterial community in water associated with diseased corals.


2019 ◽  
Vol 153 (3) ◽  
pp. 322-327 ◽  
Author(s):  
Gaurav K Gupta ◽  
Xiaoping Sun ◽  
Constance M Yuan ◽  
Maryalice Stetler-Stevenson ◽  
Robert J Kreitman ◽  
...  

Abstract Objectives We evaluated efficacy of two dual immunohistochemistry (IHC) staining assays in assessing hairy cell leukemia (HCL) involvement in core biopsies and compared the results with concurrently collected flow cytometric data. Methods Overall, 148 patients with HCL (123 male, 25 female; mean age: 59.8 years; range: 25-81 years) had multiparameter flow cytometry performed using CD19, CD20, CD22, CD11c, CD25, CD103, CD123, surface light chains, CD5, and CD23. In parallel, bone marrow IHC was done using PAX5/CD103 and PAX5/tartrate-resistant alkaline phosphatase (TRAP) dual IHC stains. Results Overall sensitivity of dual IHC stains was 81.4%, positive predictive value was 100%, and negative predictive value was 81.7%. All IHC-positive cases concurred with flow cytometry data, even when HCL burden was extremely low in the flow cytometry specimens (as low as 0.02% of all lymphoid cells). Conclusions Dual IHC stain is a sensitive tool in detecting HCL, even in cases with minimal disease involvement.


Cancer ◽  
1990 ◽  
Vol 63 (9) ◽  
pp. 1780-1783 ◽  
Author(s):  
Dane K. Hermansen ◽  
Myron R. Melamed ◽  
John S. Coon ◽  
Ronald S. Weinstein ◽  
Ralph Devere White ◽  
...  

2001 ◽  
Vol 67 (2) ◽  
pp. 539-545 ◽  
Author(s):  
Feng Chen ◽  
Jing-rang Lu ◽  
Brian J. Binder ◽  
Ying-chun Liu ◽  
Robert E. Hodson

ABSTRACT A novel nucleic acid stain, SYBR Gold, was used to stain marine viral particles in various types of samples. Viral particles stained with SYBR Gold yielded bright and stable fluorescent signals that could be detected by a cooled charge-coupled device camera or by flow cytometry. The fluorescent signal strength of SYBR Gold-stained viruses was about twice that of SYBR Green I-stained viruses. Digital images of SYBR Gold-stained viral particles were processed to enumerate the concentration of viral particles by using digital image analysis software. Estimates of viral concentration based on digitized images were 1.3 times higher than those based on direct counting by epifluorescence microscopy. Direct epifluorescence counts of SYBR Gold-stained viral particles were in turn about 1.34 times higher than those estimated by the transmission electron microscope method. Bacteriophage lysates stained with SYBR Gold formed a distinct population in flow cytometric signatures. Flow cytometric analysis revealed at least four viral subpopulations for a Lake Erie sample and two subpopulations for a Georgia coastal sample. Flow cytometry-based viral counts for various types of samples averaged 1.1 times higher than direct epifluorescence microscopic counts. The potential application of digital image analysis and flow cytometry for rapid and accurate measurement of viral abundance in aquatic environments is discussed.


Sign in / Sign up

Export Citation Format

Share Document