scholarly journals CD161 Is Expressed in a Subset of T-Cell Prolymphocytic Leukemia Cases and Is Useful for Disease Follow-up

2019 ◽  
Vol 152 (4) ◽  
pp. 471-478
Author(s):  
Scott R Gilles ◽  
Sophia L Yohe ◽  
Michael A Linden ◽  
Michelle Dolan ◽  
Betsy Hirsch ◽  
...  

AbstractObjectivesCD161 (NKRP1) is a lectin-like receptor present on NK cells and rare T-cell subsets. We have observed CD161 expression in some cases of T-cell prolymphocytic leukemia (T-PLL) and found it to be useful in follow-up and detection of disease after treatment.MethodsRetrospective review of T-PLL cases with complete flow cytometry data including CD161.ResultsWe identified 10 cases of T-PLL with flow cytometric evaluation of CD161 available. Six of these cases were positive for CD161 expression. All CD161-positive cases were positive for CD8 with variable CD4 expression, whereas all CD161-negative cases were negative for CD8. In a case with two neoplastic subsets positive and negative for CD8, only the former expressed CD161.ConclusionsThese novel results suggest that CD161 is often aberrantly expressed in a defined subset of T-PLL positive for CD8. We are showing the utility of this immunophenotype in diagnosis and follow-up.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1682-1682 ◽  
Author(s):  
Henan Zhang ◽  
Esteban Braggio ◽  
Jaime Davila ◽  
Andrew L. Feldman ◽  
Timothy G. Call ◽  
...  

Abstract Introduction T-cell prolymphocytic leukemia (T-PLL) is a rare mature T-Cell malignancy typically associated with aggressive clinical course. Leukemic T-cells demonstrate post-thymic T-cell phenotypes (Tdt-, CD1a-, CD5+, CD2+ and CD7+) and commonly are CD4+/CD8- T-cells, but co-expression of CD4+/CD8+ or CD8+/CD4- have also been observed. Rearrangement of chromosome 14 involving TCL1 locus is the cornerstone for T-PLL diagnosis which leads to overexpression of oncogene TCL1. As a binding partner for TCL1, AKT expression correlates with worse prognosis. Despite advances in identification of novel mutations, therapeutic option is limited with most patients having very short survival. Herein, we performed a detailed analysis of specific T-cell subsets affected in T-PLL and a comprehensive genomic analysis by whole exome sequencing (WES) and RNA sequencing. We also explored the preclinical efficacy of targeting AKT activation by AKT inhibitor MK2206 on leukemic T-cells isolated from T-PLL patients. Methods T-PLL leukemic cells were isolated from blood or marrow samples of T-PLL patients (n=9) and were tested for involved T-cell subsets by multicolor flow cytometric analysis. Leukemic T-cells were treated with escalating doses of MK2206 (0 to 10 µM) for about 80 hours and were assessed for their apoptosis levels using Annexin V flow cytometric analysis. Whole exome sequencing (WES) and RNA sequencing were conducted using genomic DNA and RNA isolated from purified leukemic T cells from T-PLL patients. Results Phenotypic analysis of T-cell subsets in T-PLL patients showed that leukemic T-cells in 4 untreated T-PLL patients are consistent with naïve T-cell phenotype (CD45RA+, CD45RO-, CCR7+). Leukemic T-cells in 3 of the untreated patients and in 2 of the treated patients have central memory T (CD45RA-, CD45RO+, CCR7+) and effector memory T phenotypes (CD45RA-, CD45RO+,CCR7-) respectively. MK2206 treatment was able to induce dose-dependent apoptosis on the isolated PBMC (containing > 90% leukemic T-cells) of T-PLL patients (n=4) (IC50: 5 µM). FISH analysis found a rearrangement of TCL1 locus on chromosome 14 in all T-PLL cases (n=9). Three cases have also been detected to have del (11q) involving ATM locus and one patient has both del(11q) and del(17p). Subsequent WES (n=7) and RNA sequencing (n=6) analysis revealed recently reported mutations in ATM (frame shift mutation and early stop mutation W579*) in 2 cases, JAK3 (M511I) in 2 cases and STAT5B (T628S and N642H) in 2 cases. Importantly, novel somatic mutations in gene IKZF1 (N159S), NTRK1 (R33W), AP2A2 (P514L), HDAC8 (I115R), RARB (G90W) and TNIP2 (K104Q) were detected by WES. Mutations in EML4 (L548W and F304S) and VAV3 (C282Y and splice site mutation) were also identified in 2 different T-PLL cases. RNA sequencing revealed several fusion transcripts resulting in early stop of several different genes including PTPRT, L3MBTL1, UCKL1 in one T-PLL case. Conclusion T-PLL leukemic T-cells are consistent with either naïve or central memory T-cell subsets in untreated patients. The AKT inhibitor MK-2206 was capable of inducing apoptosis and could be a potential therapeutic agent for T-PLL patients. In addition, we detected known mutations in ATM and JAK-STAT pathways. Novel mutations in genes involving DNA binding and chromatin remodeling (IKZF1, HDAC8) or kinase signal pathway (NTRK1, TNIP2, VAV3, EML4) were uncovered. These results suggest that further therapeutic approaches could be developed to target DNA binding factors or JAK-STAT or AKT-TCL1 signal pathway with an ultimate goal to improve survival of T-PLL patients. Disclosures Off Label Use: Off label use of MK2206: MK-2206 is an AKT inhibitor obtained from Selleck Chemicals and is used to treat leukemic cells in vitro to test the leukemic sensitivity to AKT inhibition. .


2021 ◽  
Vol 19 ◽  
pp. 205873922110005
Author(s):  
Di Zhao ◽  
Xiao Yang ◽  
Jie Zhang ◽  
Yi Zhang

T cell immunoglobulin and mucin domain-containing molecule-3 (Tim-3) has been found to play important roles in systemic lupus erythematosus (SLE), however, whether Tim-3 is involved in apoptosis of NK cells in SLE remains unknown. The proportion of CD3−CD56+ NK cells and the percentage of AnnexinV+ NK cells were analyzed by flow cytometry in SLE patients and healthy controls. Tim-3 expression on NK cells was also evaluated by flow cytometry. We firstly observed a decreased proportion of NK cells and an increased proportion of apoptotic NK cells in SLE patients. The proportion of apoptotic NK cells was positively correlated with anti-dsDNA and SLEDAI. Tim-3 expression on NK cells was up-regulated in SLE patients. Further analysis showed that Tim-3 expression on NK cells was negatively correlated with the proportion of apoptotic NK cells, anti-dsDNA and SLEDAI, while positively correlated with the proportion of NK cells. The present results suggest that Tim-3 might play roles in SLE by regulating the apoptosis of NK cells and Tim-3 might serve as a potential target for the treatment of SLE.


2009 ◽  
Vol 296 (5) ◽  
pp. G1054-G1059 ◽  
Author(s):  
Satoshi Kuboki ◽  
Nozomu Sakai ◽  
Johannes Tschöp ◽  
Michael J. Edwards ◽  
Alex B. Lentsch ◽  
...  

Helper T cells are known to mediate hepatic ischemia/reperfusion (I/R) injury. However, the precise mechanisms and subsets of CD4+ T cells that contribute to this injury are still controversial. Therefore, we sought to determine the contributions of different CD4+ T cell subsets during hepatic I/R injury. Wild-type, OT-II, or T cell receptor (TCR)-δ-deficient mice were subjected to 90 min of partial hepatic ischemia followed by 8 h of reperfusion. Additionally, wild-type mice were pretreated with anti-CD1d, -NK1.1, or -IL-2R-α antibodies before I/R injury. OT-II mice had diminished liver injury compared with wild-type mice, implicating that antigen-dependent activation of CD4+ T cells through TCRs is involved in hepatic I/R injury. TCR-δ knockout mice had decreased hepatic neutrophil accumulation, suggesting that γδ T cells regulate neutrophil recruitment. We found that natural killer T (NKT) cells, but not NK cells, contribute to hepatic I/R injury via CD1d-dependent activation of their TCRs, as depletion of NKT cells by anti-CD1d antibody or depletion of both NKT cells and NK cells by anti-NK1.1 attenuated liver injury. Although regulatory T cells (Treg) are known to suppress T cell-dependent inflammation, depletion of Treg cells had little effect on hepatic I/R injury. The data suggest that antigen-dependent activation of CD4+ T cells contributes to hepatic I/R injury. Among the subsets of CD4+ T cells, it appears that γδ T cells contribute to neutrophil recruitment and that NKT cells directly injure the liver. In contrast, NK cells and Treg have little effects on hepatic I/R injury.


2018 ◽  
Vol 12 (supplement_1) ◽  
pp. S137-S138
Author(s):  
B Roosenboom ◽  
C Smids ◽  
P Wahab ◽  
M Groenen ◽  
E Van Koolwijk ◽  
...  

1992 ◽  
Vol 10 (1) ◽  
pp. 63-67 ◽  
Author(s):  
R. L. Aamodt ◽  
J. S. Coon ◽  
A. Deitch ◽  
R. W. deVere White ◽  
L. G. Koss ◽  
...  

Cytometry ◽  
1995 ◽  
Vol 21 (2) ◽  
pp. 187-196 ◽  
Author(s):  
M. Roederer ◽  
M. Bigos ◽  
T. Nozaki ◽  
R. T. Stovel ◽  
D. R. Parks ◽  
...  

2017 ◽  
Vol 71 (2) ◽  
pp. 174-179 ◽  
Author(s):  
Gregory David Scott ◽  
Susan K Atwater ◽  
Dita A Gratzinger

AimsTo create clinically relevant normative flow cytometry data for understudied benign lymph nodes and characterise outliers.MethodsClinical, histological and flow cytometry data were collected and distributions summarised for 380 benign lymph node excisional biopsies. Outliers for kappa:lambda light chain ratio, CD10:CD19 coexpression, CD5:CD19 coexpression, CD4:CD8 ratios and CD7 loss were summarised for histological pattern, concomitant diseases and follow-up course.ResultsWe generated the largest data set of benign lymph node immunophenotypes by an order of magnitude. B and T cell antigen outliers often had background immunosuppression or inflammatory disease but did not subsequently develop lymphoma.ConclusionsDiagnostic immunophenotyping data from benign lymph nodes provide normative ranges for clinical use. Outliers raising suspicion for B or T cell lymphoma are not infrequent (26% of benign lymph nodes). Caution is indicated when interpreting outliers in the absence of excisional biopsy or clinical history, particularly in patients with concomitant immunosuppression or inflammatory disease.


2021 ◽  
Author(s):  
Dachao Mou ◽  
Shasha Wu ◽  
Ling Jiao ◽  
Yi Zhou ◽  
Xiufeng Bai

Abstract Background Coronary heart disease (CHD) is causing by the aberrant aggregation of immune cells in plaque. This study aimed to identify abnormal T cell subtypes and inflammatory factors in CHD patients.Methods and results T cell subsets from 187 CHD patients were analyzed using flow cytometry. Plasma concentration of cytokines were analyzed by Luminex. Flow cytometric analysis revealed that the number of ThGM cells was higher in CHD patients. The proportion of Th17 and Th1 cells were also increased in CHD patients. levels of IL-4, IL-5, IL-6, and IL-10 were significantly higher in CHD patients (P<0.05). However, levels of GM-CSF were slightly lower in CHD patients. Conclusions ThGM can be considered as a diagnostic marker of CDH.


Sign in / Sign up

Export Citation Format

Share Document