Characterization of adenosine receptor(s) involved in adenosine-induced bronchoconstriction in an allergic mouse model

2003 ◽  
Vol 284 (6) ◽  
pp. L1012-L1019 ◽  
Author(s):  
Ming Fan ◽  
Weixi Qin ◽  
S. Jamal Mustafa

We recently reported that adenosine caused bronchoconstriction and enhanced airway inflammation in an allergic mouse model. In this study, we further report the characterization of the subtype of adenosine receptor(s) involved in bronchoconstriction. 5′-( N-ethylcarboxamido)adenosine (NECA), a nonselective adenosine agonist, elicited bronchoconstriction in a dose-dependent manner. Little effects of N 6-cyclopentyladenosine (A1-selective agonist) and 2- p-(2-carboxyethyl)phenethylamino-5′- N-ethylcarboxamidoadenosine (A2A-selective agonist) compared with NECA were observed in this model. 2-Chloro- N 6-(3-iodobenzyl)-9-[5-(methylcarbamoyl)-β-d-ribofuranosyl]adenosine, an A3-selective receptor agonist, produced a dose-dependent bronchoconstrictor response, which was blocked by selective A3 antagonist 2,3-diethyl-4,5-dipropyl-6-phenylpyridine-3-thiocarboxylate-5-carboxylate (MRS1523). However, MRS1523 only partially inhibited NECA-induced bronchoconstriction. Neither selective A1 nor A2A antagonists affected NECA-induced bronchoconstriction. Enprofylline, a relatively selective A2B receptor antagonist, blocked partly NECA-induced bronchoconstriction. Furthermore, a combination of enprofylline and MRS1523 completely abolished NECA-induced bronchoconstrictor response. Using RT-PCR, we found that all four adenosine receptor subtypes are expressed in control lungs. Allergen sensitization and challenge significantly increased transcript levels of the A2B and A3receptors, whereas the A1 receptor message decreased. No change in transcript levels of A2A receptors was observed after allergen sensitization and challenge. These findings suggest that A2B and A3 adenosine receptors play an important role in adenosine-induced bronchoconstriction in our allergic mouse model. Finally, whether the airway effects of the receptor agonists/antagonists are direct or indirect needs further investigations.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuewen Wu ◽  
Li Zhang ◽  
Yihui Li ◽  
Wenjuan Zhang ◽  
Jianjun Wang ◽  
...  

AbstractMutations in voltage-gated potassium channel KCNE1 cause Jervell and Lange-Nielsen syndrome type 2 (JLNS2), resulting in congenital deafness and vestibular dysfunction. We conducted gene therapy by injecting viral vectors using the canalostomy approach in Kcne1−/− mice to treat both the hearing and vestibular symptoms. Results showed early treatment prevented collapse of the Reissner’s membrane and vestibular wall, retained the normal size of the semicircular canals, and prevented the degeneration of inner ear cells. In a dose-dependent manner, the treatment preserved auditory (16 out of 20 mice) and vestibular (20/20) functions in mice treated with the high-dosage for at least five months. In the low-dosage group, a subgroup of mice (13/20) showed improvements only in the vestibular functions. Results supported that highly efficient transduction is one of the key factors for achieving the efficacy and maintaining the long-term therapeutic effect. Secondary outcomes of treatment included improved birth and litter survival rates. Our results demonstrated that gene therapy via the canalostomy approach, which has been considered to be one of the more feasible delivery methods for human inner ear gene therapy, preserved auditory and vestibular functions in a dose-dependent manner in a mouse model of JLNS2.


1997 ◽  
Vol 357 (1) ◽  
pp. 1-9 ◽  
Author(s):  
K.-N. Klotz ◽  
J. Hessling ◽  
J. Hegler ◽  
C. Owman ◽  
B. Kull ◽  
...  

1990 ◽  
Vol 5 (2) ◽  
pp. 159-166 ◽  
Author(s):  
N. G. N. Milton ◽  
E. W. Hillhouse ◽  
S. A. Nicholson ◽  
C. H. Self ◽  
A. M. McGregor

ABSTRACT Murine monoclonal antibodies against human/rat corticotrophin-releasing factor-41 (CRF-41) were produced and characterized for use in the immunological and biological characterization of CRF-41. Spleen cells from BALB/c mice immunized with CRF-41 conjugated to bovine γ-globulin were fused with a BALB/c-derived non-secretor X-63 myeloma line. Hybridomas were selected for CRF antibody production by enzyme-linked immunosorbent assay, and positive hybridomas cloned twice. Three monoclonal antibodies were obtained (KCHMB001, KCHMB002 and KCHMB003) and characterized as IgG1, IgG1 and IgG2a isotypes respectively, with affinity constants for rat CRF-41 of 30, 53 and 34 nmol/l respectively. All three monoclonal antibodies recognize an epitope contained between residues 34 and 41 of the human/rat sequence. The antibodies were able to neutralize the ACTH-releasing activity of rat CRF-41, applied to rat pituitary fragments in vitro, in a dose-dependent manner. Isoelectric focusing showed that KCHMB 003 detected bands of synthetic rat CRF-41 and rat [Met(O)21,38]-CRF-41 at pH 7·1 and 6·8 respectively. Use of KCHMB003 in a two-site enzyme-amplified immunoassay showed that this antibody recognizes both synthetic rat CRF-41 and immunoreactive CRF-41 in rat hypothalamic tissue extracts.


2018 ◽  
Vol 23 (8) ◽  
pp. 869-876
Author(s):  
Bendix R. Slegtenhorst ◽  
Oscar R. Fajardo Ramirez ◽  
Yuzhi Zhang ◽  
Zahra Dhanerawala ◽  
Stefan G. Tullius ◽  
...  

The vascular endothelium plays a critical role in the health and disease of the cardiovascular system. Importantly, biomechanical stimuli generated by blood flow and sensed by the endothelium constitute important local inputs that are translated into transcriptional programs and functional endothelial phenotypes. Pulsatile, laminar flow, characteristic of regions in the vasculature that are resistant to atherosclerosis, evokes an atheroprotective endothelial phenotype. This atheroprotective phenotype is integrated by the transcription factor Kruppel-like factor-2 (KLF2), and therefore the expression of KLF2 can be used as a proxy for endothelial atheroprotection. Here, we report the generation and characterization of a cellular KLF2 reporter system, based on green fluorescence protein (GFP) expression driven by the human KLF2 promoter. This reporter is induced selectively by an atheroprotective shear stress waveform in human endothelial cells, is regulated by endogenous signaling events, and is activated by the pharmacological inducer of KLF2, simvastatin, in a dose-dependent manner. This reporter system can now be used to probe KLF2 signaling and for the discovery of a novel chemical-biological space capable of acting as the “pharmacomimetics of atheroprotective flow” on the vascular endothelium.


2018 ◽  
Vol 13 (12) ◽  
pp. 1934578X1801301
Author(s):  
Huiqin Wang ◽  
Guanzhen Gao ◽  
Lijing Ke ◽  
Jianwu Zhou ◽  
Pingfan Rao

A novel lectin-like protein with MW 63.2 kDa, designated as SBLP, has been isolated and characterized from the dried roots of Scutellaria baicalensis Georgi (Lamiaceae). SBLP was purified by ammonium sulfate precipitation and anion exchange chromatography. It is a glycoprotein according to a PAS staining assay and consisting of protein (86.0%) and sugar (14.0%). Its N-terminal amino acid sequence was determined as GSAVGFLY by Edman degradation. SBLP showed hemagglutinating activity against human and rooster erythrocytes, which were stable below 60°C and in the pH range of 4 −10. Furthermore, SBLP was found to be stimulated by Ca2+, Na+, Ba2+, Zn2+ ions, which suggested it was a metal-dependent lectin. SBLP inhibited the growth of Fusarium oxysporum f.sp. lycopersici and Alternaria eichhorniae in the a dose-dependent manner, and suppressed the proliferation of HepG2 tumor cells with an IC50 of 1.00 μM. This is the first report of a lectin from Radix Scutellariae.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S165-S166
Author(s):  
E Becker ◽  
M Wiendl ◽  
A Schulz-Kuhnt ◽  
I Atreya ◽  
R Atreya ◽  
...  

Abstract Background Vedolizumab has emerged as an important pillar of treatment in inflammatory bowel disease (IBD). However, for unknown reasons, not all patients respond to therapy. Earlier clinical studies suggested decreased response rates in the highest compared with medium dosage groups. Interestingly, vedolizumab has been shown to inhibit the homing of both regulatory (Treg) and effector T (Teff) cells and previous data from our group suggested different effect sizes in both populations. Thus, we hypothesised that the non-linear exposure–efficacy correlation might be explained by dose-dependent differential effects of vedolizumab on Treg and Teff homing. Therefore, we studied functional effects of different vedolizumab exposure levels on Treg and Teff cell trafficking. Methods The α4β7 expression on different human T-cell subsets as well as the binding characteristics of vedolizumab to these cells at different exposure levels was analysed via flow cytometry. Functional effects of different vedolizumab concentrations on the adhesion of Tregs and Teffs to mucosal addressin cell adhesion molecule 1 (MAdCAM-1) were analysed using dynamic in vitro adhesion assays, transmigration assays and in vivo homing assays in a humanised mouse model. The in vivo binding of vedolizumab to Tregs and Teffs in patients receiving therapy was quantified and correlated with the corresponding serum levels. Results We found a preferential binding of vedolizumab to Tregs at an exposure with 0.4 µg/ml vedolizumab that shifted to a preferential binding to Teffs at an exposure with 10 µg/ml. Further increase of vedolizumab to 50 µg/ml led to equal binding to Tregs and Teffs (Figure 1). Consistently, at 10 µg/ml, dynamic adhesion of Tregs to MAdCAM-1 was increased compared with Teffs, but no difference was noted at 50 µg/ml. Additionally, a higher number of Treg compared with Teff cells were able to transmigrate in a MAdCAM-1-dependent manner at a concentration of 10 µg/ml vedolizumab. Preliminary data from homing experiments in a humanised mouse model and from IBD patients treated with vedolizumab support the notion that differential binding preferences depending on the exposure level can also be observed in vivo. Conclusion Our findings support a dose-dependent differential binding of vedolizumab to different T-cell subpopulations and suggest that an optimal ‘window’ of exposure exists, in which effects on Teffs predominate over Tregs. While offering a potential explanation for earlier findings in dose-ranging studies, our data might lay the basis for the establishment of individualised dose optimisation in IBD patients.


2009 ◽  
Vol 297 (5) ◽  
pp. H1655-H1660 ◽  
Author(s):  
Dovenia S. Ponnoth ◽  
Maryam Sharifi Sanjani ◽  
Catherine Ledent ◽  
Kevin Roush ◽  
Thomas Krahn ◽  
...  

Adenosine mediates vascular responses through four receptor subtypes: A1, A2A, A2B, and A3. The role of A2A receptors in aortic vascular tone was investigated using A2A adenosine receptor (AR) knockout (A2AKO) and corresponding wild-type (A2AWT) mice. Isolated aortic rings from A2AWT and A2AKO mice were precontracted with phenylephrine (10−7 M), and concentration responses for adenosine analogs and selective agonists/antagonists were obtained. Nonselective adenosine analog (NECA; EC50 = 6.78 μM) and CGS-21680 (A2AAR selective agonist; EC50 = 0.013 μM) produced concentration-dependent relaxation (maximum of 25% and 28% relaxation at 10−5 M NECA and CGS-21680, respectively) in A2AWT aorta. In A2AKO aorta, NECA (EC50 = 0.075 μM) induced concentration-dependent contraction (maximum contraction of 47% at 10−6 M; P < 0.05 compared with A2AWT), whereas CGS-21680 produced no response. SCH-58261 (10−6 M; A2AAR selective antagonist) abolished both NECA- and CGS-21680-mediated vasorelaxation in A2AWT ( P < 0.05), whereas no change was observed in A2AKO. When DPCPX (10−5 M; A1 selective antagonist) was used in NECA concentration response, greater vasorelaxation was observed in A2AWT (50% vs. 25% in controls at 10−5 M; P < 0.05), whereas lower contraction was seen in A2AKO tissues (5% vs. 47% in controls at 10−6 M; P < 0.05). Aortic endothelial function, determined by response to acetylcholine, was significantly higher in WT compared with KO (66% vs. 51%; P < 0.05). BAY 60–6583 (A2B selective agonist) produced similar relaxation in both KO and WT tissues. In conclusion, A2AAR KO mice had significantly lower aortic relaxation and endothelial function, suggesting that the A2AAR plays an important role in vasorelaxation, probably through an endothelium-dependent mechanism.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2866-2866
Author(s):  
Hisayuki Yao ◽  
Eishi Ashihara ◽  
Rina Nagao ◽  
Shinya Kimura ◽  
Hideyo Hirai ◽  
...  

Abstract Abstract 2866 Poster Board II-842 Although new molecular targeting agents against multiple myeloma (MM) have been developed, MM still remains an incurable disease. It is important to continue to investigate new therapeutic agents based on the biology of MM cells. β-catenin is the downstream effector of Wnt signaling and it regulates genes implicated in malignant progression. We have demonstrated that blockade of Wnt/β-catenin signaling pathway inhibits the progression of MM by using RNA interference methods with an in vivo mouse model (Ashihara E, et al. Clin Cancer Res 15:2731, 2009.). In this study, we investigated the effects of AV-65, a novel inhibitor of the Wnt/β-catenin signaling pathway, on MM cells. The system to identify a series of small molecule compounds using a biomarker driven approach has been established. A gene expression biomarker signature reporting on the inhibition of Wnt/β-catenin signaling was generated upon treatment of a colon cancer cell line with β-catenin siRNA. This gene expression signatiure was used to screen a small molecule compound library to identify compounds which mimic knockdown of β-catenin and thus potentially inhibit the Wnt/β-catenin signaling pathway. One compound series, LC-363, was discovered from this screen and validated as novel Wnt/β-catenin signaling inhibitors (Strovel JW, et al. ASH meeting, 2007.). We investigated the inhibitory effects of AV-65, one of LC-363 compounds, on MM cell proliferation. AV-65 inhibited the proliferation of MM cells in a time- and a dose-dependent manner and the values of IC50 at 72 hrs were ranging from 11.7 to 82.1 nM. AV-65 also showed an inhibitory effect on the proliferation of RPMI8226/LR-5 melphalan-resistant MM cells (provided from Dr. William S. Dalton). In flow cytometric analysis, apoptotic cells were increased by AV-65 treatment in a time- and a dose-dependent manner. Western blotting analysis showed that β-catenin was ubiquitinated and that the expression of nuclear β-catenin diminished (Figure 1). Moreover, AV-65 suppressed T-cell factor transcriptional activities, resulting in the decrease of c-myc expression. Taken together, AV-65 promotes the degradation of β-catenin, resulting in the induction of apoptosis of MM cells. We next investigated the in vivo effects of AV-65 using an orthotopic MM-bearing mouse model. AV-65 inhibits the growth of MM cells and significantly prolongs the survival rates (Figure 2). In conclusion, AV-65 inhibited the proliferation of MM cells via inhibition of the Wnt/β-catenin signaling pathway. AV-65 is a promising therapeutic agent for treatment of MM. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 22 (3) ◽  
pp. 251-260 ◽  
Author(s):  
MA Ventura ◽  
P Rene ◽  
Y de Keyzer ◽  
X Bertagna ◽  
E Clauser

The gene of the mouse V3/V1b receptor was identified by homology cloning. One of the genomic clones contained the entire coding sequence. The cDNA presented high identity with rat (92%) and human (84%) sequences. Southern blot analysis indicated the existence of a single gene. Tissue distribution was studied by RT-PCR. The major site of expression was the pituitary. A faint signal was also present in hypothalamus, brain, adrenal, pancreas and colon. The mouse corticotroph cell line, AtT20, did not express the transcript. In order to confirm the identity of the sequence, the V3/V1b receptor cDNA was cloned and stably expressed in CHO-AA8 Tet-Off cells under the control of tetracycline. When transfected cells were treated with arginine vasopressin (AVP), inositol phosphate production increased in a dose-dependent manner, indicating that the V3/V1b receptor couples to phospholipase C. Moreover, AVP did not stimulate cAMP production. Binding studies with [3H]AVP indicated that the affinity of the mouse V3/V1b receptor (Kd=0.5 nM) is similar to that reported for rat and human receptors. The rank order of potency established in competition binding experiments with different analogues was representative of a V3/V1b profile, distinct from V1a and V2. However, significant differences were found between human and mouse receptors tested in parallel. Thus the pharmacology of V3/V1b receptors can not be transposed among different species.


Sign in / Sign up

Export Citation Format

Share Document