Membrane currents in canine bronchial artery and their regulation by excitatory agonists

2002 ◽  
Vol 282 (6) ◽  
pp. L1358-L1365 ◽  
Author(s):  
Q. J. Li ◽  
L. J. Janssen

The bronchial vasculature plays an important role in airway physiology and pathophysiology. We investigated the ion currents in canine bronchial smooth muscle cells using patch-clamp techniques. Sustained outward K+current evoked by step depolarizations was significantly inhibited by tetraethylamonium (1 and 10 mM) or by charybdotoxin (10−6M) but was not significantly affected by 4-aminopyridine (1 or 5 mM), suggesting that it was primarily a Ca2+-activated K+current. Consistent with this, the K+current was markedly increased by raising external Ca2+to 4 mM but was decreased by nifedipine (10−6M) or by removing external Ca2+. When K+currents were blocked (by Cs+in the pipette), step depolarizations evoked transient inward currents with characteristics of L-type Ca2+current as follows: 1) activation that was voltage dependent (threshold and maximal at −50 and −10 mV, respectively); 2) inactivation that was time dependent and voltage dependent (voltage causing 50% maximal inactivation of −26 ± 22 mV); and 3) blockade by nifedipine (10−6M). The thromboxane mimetic U-46619 (10−6M) caused a marked augmentation of outward K+current (as did 10 mM caffeine) lasting only 10–20 s; this was followed by significant suppression of the K+current lasting several minutes. Phenylephrine (10−4M) also suppressed the K+current to a similar degree but did not cause the initial transient augmentation. None of these three agonists elicited inward current of any kind. We conclude that bronchial arterial smooth muscle expresses Ca2+-dependent K+channels and voltage-dependent Ca2+channels and that its excitation does not involve activation of Cl−channels.

1997 ◽  
Vol 272 (6) ◽  
pp. C1757-C1765 ◽  
Author(s):  
L. J. Janssen

We examined the voltage-dependent Ca2+ currents in freshly dissociated smooth muscle cells obtained from canine bronchi (3rd to 5th order). When cells were depolarized from -40 mV, we observed an inward current that 1) exhibited threshold and peak activation at approximately -35 mV and +10 mV, respectively; 2) inactivated slowly with half-inactivation at -20 mV; 3) deactivated rapidly (time constant < 1 ms) upon repolarization; and 4) was abolished by nifedipine and suppressed by cholinergic agonist. These characteristics are typical of L-type Ca2+ current. During depolarization from -70 or -80 mV, however, many cells exhibited a second inward current superimposed on the L-type Ca2+ current. Activation of this other current was first noted at -60 mV, was maximal at approximately -20 mV, and was very rapid (reaching a peak within 10 ms). Inactivation of the other current was also rapid (time constant approximately 3 ms) and half-maximal at approximately -70 mV. There was a persistent “window” current over the physiologically relevant range of potentials (i.e., -60 to -30 mV). This current was also sensitive to nifedipine (although less so than the L-type current) and to Ni2+, but not to cholinergic agonist. Finally, the tail currents evoked upon repolarization to the holding potential decayed approximately 10 times more slowly than did L-type tail currents. These characteristics are all typical of T-type Ca2+ current. We conclude that there is a prominent T-type Ca2+ current in canine bronchial smooth muscle; this current may play a central role in excitation-contraction coupling, in refilling of the internal Ca2+ pool, and in electrical slow waves. Because airflow resistance is determined primarily by the smaller airways and not the trachea, these findings may have important implications with respect to airway physiology and the mechanisms underlying airway hyperreactivity and asthma.


1999 ◽  
Vol 127 (6) ◽  
pp. 1415-1421 ◽  
Author(s):  
Yoko Hayasaki-Kajiwara ◽  
Noriyuki Naya ◽  
Toshitake Shimamura ◽  
Takanori Iwasaki ◽  
Masatoshi Nakajima

2013 ◽  
Vol 191 (5) ◽  
pp. 2624-2636 ◽  
Author(s):  
Latifa Chachi ◽  
Aarti Shikotra ◽  
S. Mark Duffy ◽  
Omar Tliba ◽  
Christopher Brightling ◽  
...  

2020 ◽  
Vol 6 (4) ◽  
pp. 00147-2020
Author(s):  
Sangeetha Ramu ◽  
Jenny Calvén ◽  
Charalambos Michaeloudes ◽  
Mandy Menzel ◽  
Hamid Akbarshahi ◽  
...  

BackgroundAsthma exacerbations are commonly associated with rhinovirus (RV) infection. Interleukin-33 (IL-33) plays an important role during exacerbation by enhancing Type 2 inflammation. Recently we showed that RV infects bronchial smooth muscle cells (BSMCs) triggering production of interferons and IL-33. Here we compared levels of RV-induced IL-33 in BSMCs from healthy and asthmatic subjects, and explored the involvement of pattern-recognition receptors (PRRs) and downstream signalling pathways in IL-33 expression.MethodBSMCs from healthy and severe and non-severe asthmatic patients were infected with RV1B or stimulated with the PRR agonists poly(I:C) (Toll-like receptor 3 (TLR3)), imiquimod (TLR7) and poly(I:C)/LyoVec (retinoic acid-inducible gene 1 (RIG-I)/melanoma differentiation-associated protein 5 (MDA5)). Knockdown of TLR3, RIG-I and MDA5 was performed, and inhibitors targeting TBK1, nuclear factor-κB (NF-κB) and transforming growth factor (TGF)-β-activated kinase 1 (TAK1) were used. Gene and protein expression were assessed.ResultsRV triggered IL-33 gene and protein expression in BSMCs. BSMCs from patients with non-severe asthma showed higher baseline and RV-induced IL-33 gene expression compared to cells from patients with severe asthma and healthy controls. Furthermore, RV-induced IL-33 expression in BSMCs from healthy and asthmatic individuals was attenuated by knockdown of TLR3. Inhibition of TAK1, but not NF-κB or TBK1, limited RV-induced IL-33. The cytokine secretion profile showed higher production of IL-33 in BSMCs from patients with non-severe asthma compared to healthy controls upon RV infection. In addition, BSMCs from patients with non-severe asthma had higher levels of RV-induced IL-8, TNF-α, IL-1β, IL-17A, IL-5 and IL-13.ConclusionRV infection caused higher levels of IL-33 and increased pro-inflammatory and Type 2 cytokine release in BSMCs from patients with non-severe asthma. RV-induced IL-33 expression was mainly regulated by TLR3 and downstream via TAK1. These signalling molecules represent potential therapeutic targets for treating asthma exacerbations.


Sign in / Sign up

Export Citation Format

Share Document