Lung surfactant: some historical perspectives leading to its cellular and molecular biology

1989 ◽  
Vol 257 (2) ◽  
pp. L1-L12 ◽  
Author(s):  
D. F. Tierney

By appreciating the influence of surface forces on lung mechanics, discovering pulmonary surfactant, and then recognizing its deficiency states a small number of investigators began the first 30 years of pulmonary surfactant research. These investigators had different backgrounds and took diverse approaches to understand surface forces in the lung. Their careers provide a fascinating study of the means by which new discoveries are made. After recognizing the critical importance of surfactant, investigators turned to a series of questions that obviously needed to be answered and they attempted to learn the following: 1) how to quantitate surfactant; 2) its biochemical and structural composition; 3) how it leaves the alveolar surface after secretion; and 4) its role in lung diseases. This research established the basis for pursuing the cellular and molecular biology of surfactant.

2021 ◽  
Vol 30 (162) ◽  
pp. 210077
Author(s):  
Nadia Milad ◽  
Mathieu C. Morissette

Pulmonary surfactant is a crucial and dynamic lung structure whose primary functions are to reduce alveolar surface tension and facilitate breathing. Though disruptions in surfactant homeostasis are typically thought of in the context of respiratory distress and premature infants, many lung diseases have been noted to have significant surfactant abnormalities. Nevertheless, preclinical and clinical studies of pulmonary disease too often overlook the potential contribution of surfactant alterations – whether in quantity, quality or composition – to disease pathogenesis and symptoms. In inflammatory lung diseases, whether these changes are cause or consequence remains a subject of debate. This review will outline 1) the importance of pulmonary surfactant in the maintenance of respiratory health, 2) the diseases associated with primary surfactant dysregulation, 3) the surfactant abnormalities observed in inflammatory pulmonary diseases and, finally, 4) the available research on the interplay between surfactant homeostasis and smoking-associated lung disease. From these published studies, we posit that changes in surfactant integrity and composition contribute more considerably to chronic inflammatory pulmonary diseases and that more work is required to determine the mechanisms underlying these alterations and their potential treatability.


1991 ◽  
Vol 70 (3) ◽  
pp. 1300-1308 ◽  
Author(s):  
K. Osanai ◽  
K. Takahashi ◽  
S. Sato ◽  
K. Iwabuchi ◽  
K. Ohtake ◽  
...  

We investigated whether alveolar surface force increased and participated in the lung pressure-volume relationship in bleomycin-induced pulmonary fibrosis in hamsters and, if so, whether lung surfactant was hampered in the lungs. On the air-filled pressure-volume curve, decreases of lung volume from control level were significantly higher at 3-8 cmH2O pressure on day 10 than on day 30. Because the change of lung tissue elasticity evaluated from the saline-filled pressure-volume curve was equal for the 2 days, the higher decrease of air volume on day 10 was due primarily to contribution of alveolar surface force. Pressure differences between deflation limbs of air-filled and saline-filled pressure-volume curves, which represented net alveolar surface force, were significantly higher at any lung volume between 50 and 90% total lung capacity on day 10, but almost no significance was observed on day 30. Phospholipid concentration in bronchoalveolar lavage fluid significantly decreased on day 10 but had improved by day 30. Analysis of phospholipid species in purified lung surfactant showed decreased fractions of disaturated phosphatidylcholine and phosphatidylglycerol on day 10. Surface-active properties of the surfactant, measured by a modified Wilhelmy balance, were remarkably hampered on day 10, but most of them had improved by day 30. We consider that the quantitative and functional abnormalities of lung surfactant have a part in the aggravation of lung mechanics in the acute phase of pulmonary fibrosis.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1259
Author(s):  
Maksymilian Dziura ◽  
Basel Mansour ◽  
Mitchell DiPasquale ◽  
P. Charukeshi Chandrasekera ◽  
James W. Gauld ◽  
...  

In this review, we delve into the topic of the pulmonary surfactant (PS) system, which is present in the respiratory system. The total composition of the PS has been presented and explored, from the types of cells involved in its synthesis and secretion, down to the specific building blocks used, such as the various lipid and protein components. The lipid and protein composition varies across species and between individuals, but ultimately produces a PS monolayer with the same role. As such, the composition has been investigated for the ways in which it imposes function and confers peculiar biophysical characteristics to the system as a whole. Moreover, a couple of theories/models that are associated with the functions of PS have been addressed. Finally, molecular dynamic (MD) simulations of pulmonary surfactant have been emphasized to not only showcase various group’s findings, but also to demonstrate the validity and importance that MD simulations can have in future research exploring the PS monolayer system.


1989 ◽  
Vol 257 (6) ◽  
pp. L421-L429 ◽  
Author(s):  
H. P. Haagsman ◽  
R. T. White ◽  
J. Schilling ◽  
K. Lau ◽  
B. J. Benson ◽  
...  

SP-A, a glycoprotein of pulmonary surfactant, consists of an NH2-terminal domain containing a collagen-like sequence and a COOH-terminal domain with sequence homology to several Ca2(+)-dependent lectins. We have compared the size, thermal stability, and secondary structure of recombinant SP-A, the product of a fibroblast line transfected with a single human gene encoding SP-A, with natural SP-A isolated from canine and human lungs. Our results suggest both recombinant and natural SP-A are assembled as large oligomers. More variability in the degree of oligomerization was observed with recombinant human SP-A than with natural canine SP-A. As shown by collagenase digestion, the full assembly of protein subunits was dependent on an intact collagen-like domain. The cysteines in the noncollagen domain of SP-A form intrachain bonds between residues 135-226 and 204-218. The circular dichroism spectra of both recombinant and natural SP-A were consistent with the presence of a collagen-like triple helix. As determined by the change in ellipticity at 205 nm, the thermal transition temperatures of canine, natural human, and recombinant SP-A were 51.5, 52.3, and 42.0 degrees C, respectively. These results suggest differences in the assembly and stability of the natural and recombinant proteins.


1990 ◽  
Vol 259 (4) ◽  
pp. L185-L197
Author(s):  
B. R. Stripp ◽  
J. A. Whitsett ◽  
D. L. Lattier

Gene transcription is regulated by the formation of protein-DNA complexes that influence the rate of specific initiation of transcription by RNA polymerase. Recent experimental advances allowing the identification of cis regulatory sequences that specify the binding of trans acting protein factors have made significant contributions to our understanding of the mechanistic complexities of transcriptional regulation. These methodologies have prompted the use of similar strategies to elucidate transcriptional control mechanisms involved in the tissue specific and developmental regulation of pulmonary surfactant protein gene expression. The purpose of this review is to describe various methodologies by which molecular biologists identify and subsequently assay regions of nucleic acids presumed to be integral in gene regulation at the level of transcription. It is well established that genes encoding surfactant proteins are subject to regulation by hormones, cytokines, and a variety of biologically active reagents. Perhaps future studies utilizing molecular tools outlined in this review will be valuable in identification of DNA sequences and protein factors required for the regulation of lung surfactant genes.


1998 ◽  
Vol 84 (1) ◽  
pp. 146-156 ◽  
Author(s):  
Olga V. Lopatko ◽  
Sandra Orgeig ◽  
Christopher B. Daniels ◽  
David Palmer

Lopatko, Olga V., Sandra Orgeig, Christopher B. Daniels, and David Palmer. Alterations in the surface properties of lung surfactant in the torpid marsupial Sminthopsis crassicaudata. J. Appl. Physiol. 84(1): 146–156, 1998.—Torpor changes the composition of pulmonary surfactant (PS) in the dunnart Sminthopsis crassicaudata [C. Langman, S. Orgeig, and C. B. Daniels. Am. J. Physiol. 271 ( Regulatory Integrative Comp. Physiol. 40): R437–R445, 1996]. Here we investigated the surface activity of PS in vitro. Five micrograms of phospholipid per centimeter squared surface area of whole lavage (from mice or from warm-active, 4-, or 8-h torpid dunnarts) were applied dropwise onto the subphase of a Wilhelmy-Langmuir balance at 20°C and stabilized for 20 min. After 4 h of torpor, the adsorption rate increased, and equilibrium surface tension (STeq), minimal surface tension (STmin), and the %area compression required to achieve STmin decreased, compared with the warm-active group. After 8 h of torpor, STmin decreased [from 5.2 ± 0.3 to 4.1 ± 0.3 (SE) mN/m]; %area compression required to achieve STmindecreased (from 43.4 ± 1.0 to 27.4 ± 0.8); the rate of adsorption decreased; and STeqincreased (from 26.3 ± 0.5 to 38.6 ± 1.3 mN/m). ST-area isotherms of warm-active dunnarts and mice at 20°C had a shoulder on compression and a plateau on expansion. These disappeared on the isotherms of torpid dunnarts. Samples of whole lavage (from warm-active and 8-h torpor groups) containing 100 μg phospholipid/ml were studied by using a captive-bubble surfactometer at 37°C. After 8 h of torpor, STmin increased (from 6.4 ± 0.3 to 9.1 ± 0.3 mN/m) and %area compression decreased in the 2nd (from 88.6 ± 1.7 to 82.1 ± 2.0) and 3rd (from 89.1 ± 0.8 to 84.9 ± 1.8) compression-expansion cycles, compared with warm-active dunnarts. ST-area isotherms of warm-active dunnarts at 37°C did not have a shoulder on compression. This shoulder appeared on the isotherms of torpid dunnarts. In conclusion, there is a strong correlation between in vitro changes in surface activity and in vivo changes in lipid composition of PS during torpor, although static lung compliance remained unchanged (see Langman et al. cited above). Surfactant from torpid animals is more active at 20°C and less active at 37°C than that of warm-active animals, which may represent a respiratory adaptation to low body temperatures of torpid dunnarts.


Sign in / Sign up

Export Citation Format

Share Document