Effects of intraduodenal fatty acids on appetite, antropyloroduodenal motility, and plasma CCK and GLP-1 in humans vary with their chain length

2004 ◽  
Vol 287 (3) ◽  
pp. R524-R533 ◽  
Author(s):  
Kate L. Feltrin ◽  
Tanya J. Little ◽  
James H. Meyer ◽  
Michael Horowitz ◽  
Andre J. P. M. Smout ◽  
...  

The gastrointestinal effects of intraluminal fats may be critically dependent on the chain length of fatty acids released during lipolysis. We postulated that intraduodenal administration of lauric acid (12 carbon atoms; C12) would suppress appetite, modulate antropyloroduodenal pressure waves (PWs), and stimulate the release of cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) more than an identical dose of decanoic acid (10 carbon atoms; C10). Eight healthy males (19–47 yr old) were studied on three occasions in a double-blind, randomized fashion. Appetite perceptions, antropyloroduodenal PWs, and plasma CCK and GLP-1 concentrations were measured during a 90-min intraduodenal infusion of 1) C12, 2) C10, or 3) control (rate: 2 ml/min, 0.375 kcal/min for C12/C10). Energy intake at a buffet meal, immediately after completion of the infusion, was also quantified. C12, but not C10, suppressed appetite perceptions ( P < 0.001) and energy intake (control: 4,604 ± 464 kJ, C10: 4,109 ± 588 kJ, and C12: 1,747 ± 632 kJ; P < 0.001, C12 vs. control/C10). C12, but not C10, also induced nausea ( P < 0.001). C12 stimulated basal pyloric pressures and isolated pyloric PWs and suppressed antral and duodenal PWs compared with control ( P < 0.05 for all). C10 transiently stimulated isolated pyloric PWs ( P = 0.001) and had no effect on antral PWs but markedly stimulated duodenal PWs ( P = 0.004). C12 and C10 increased plasma CCK ( P < 0.001), but the effect of C12 was substantially greater ( P = 0.001); C12 stimulated GLP-1 ( P < 0.05), whereas C10 did not. In conclusion, there are major differences in the effects of intraduodenal C12 and C10, administered at 0.375 kcal/min, on appetite, energy intake, antropyloroduodenal PWs, and gut hormone release in humans.

2019 ◽  
Vol 316 (3) ◽  
pp. G332-G337 ◽  
Author(s):  
Carsten Dirksen ◽  
Jesper Graff ◽  
Stefan Fuglsang ◽  
Jens F. Rehfeld ◽  
Jens J. Holst ◽  
...  

Dietary fat, and particularly fatty acids (FAs) from hydrolyzed triglycerides (TGs), reduces appetite, whereas paradoxically, a high-fat diet leads to excess calorie intake. We therefore hypothesized that the appetite-regulating effects of FAs are perturbed in obesity. Ten men with severe obesity [median body mass index (BMI) of 51.0 kg/m2(range of 47.9–69.0)] and 10 men without obesity [BMI of 24.6 kg/m2(range of 21.7–26.8)] were recruited for a double-blind randomized crossover study. On two occasions, participants were given isocaloric (2,660 kJ) and isovolemic (80 ml) loads of either oleic acid (long-chain FA) or olive oil (TG) containing radiolabeled lipid and water markers. Postload scintigraphy, blood sampling, and assessment of appetite were performed for 10 h, after which an ad libitum meal was served. Compared with olive oil, oleic acid slowed gastric mean emptying time (GMET) for lipids ( P < 0.001), accelerated orocoecal transit time (OCTT; P = 0.005), increased postload cholecystokinin section ( P < 0.001), and suppressed ad libitum energy intake ( P = 0.028) in men with severe obesity, and similar effects were seen in the nonobese group (no group × lipid interactions). However, independent of lipid loads, GMET and OCTT were slower (GMETlipidP = 0.046; GMETwaterP = 0.003; OCTT P = 0.001), and basal and postload secretion of glucagon-like peptide-1 (GLP-1) was attenuated ( P = 0.045 and P = 0.048, respectively) in men with severe obesity compared with men without obesity. We conclude that the more potent appetite-regulating effects of oleic acid versus olive oil are unimpaired in men with severe obesity. However, regardless of lipid formulations, severe obesity is associated with slowed gastrointestinal transit and attenuated GLP-1 secretion.NEW & NOTEWORTHY Orally ingested fatty acids more efficiently reduce appetite and energy intake than triglycerides also in men with severe obesity. Men with severe obesity have delayed gastrointestinal transit and attenuated early gut hormone responses after an oral lipid load compared with men without obesity.


1998 ◽  
Vol 95 (6) ◽  
pp. 719-724 ◽  
Author(s):  
C. Mark B. EDWARDS ◽  
Jeannie F. TODD ◽  
Mohammad A. GHATEI ◽  
Stephen R. BLOOM

1. Glucagon-like peptide-1 (7-36) amide (GLP-1) is a gut hormone released postprandially that stimulates insulin secretion, suppresses glucagon secretion and delays gastric emptying. The insulinotropic action of GLP-1 is more potent under hyperglycaemic conditions. Several published studies have indicated the therapeutic potential of subcutaneous GLP-1 in non-insulin-dependent (Type 2) diabetes mellitus. 2. We investigated whether subcutaneous GLP-1, at a dose shown to improve glycaemic control in early Type 2 diabetes, is insulinotropic at normal fasting glucose concentrations. A double-blind, randomized, crossover study of 10 healthy subjects injected with GLP-1 or saline subcutaneously after a 16 h fast was performed. The effect on cardiovascular parameters was also examined. 3. GLP-1 caused a near 5-fold rise in plasma insulin concentration. After treatment with GLP-1, circulating plasma glucose concentrations fell below the normal range in all subjects. One subject had symptoms of hypoglycaemia after GLP-1. A rise in pulse rate was found which correlated with the fall in plasma glucose concentration. An increase in blood pressure occurred with GLP-1 injection which was seen at the same time as the rise in plasma GLP-1 concentrations. 4. This study indicates that subcutaneous GLP-1 can override the normal homoeostatic mechanism maintaining fasting plasma glucose in man, and is also associated with an increase in blood pressure.


2011 ◽  
Vol 106 (11) ◽  
pp. 1757-1762 ◽  
Author(s):  
Sanne P. M. Verhoef ◽  
Diederick Meyer ◽  
Klaas R. Westerterp

In rats, oligofructose has been shown to stimulate satiety hormone secretion, reduce energy intake and promote weight loss. The present study aimed to examine the effect of oligofructose supplementation on appetite profiles, satiety hormone concentrations and energy intake in human subjects. A total of thirty-one healthy subjects (ten men and twenty-one women) aged 28 (sem 3) years with a BMI of 24·8 (sem 0·3) kg/m2 were included in a randomised double-blind, cross-over study. The subjects received 10 g oligofructose, 16 g oligofructose or 16 g placebo (maltodextrin) daily for 13 d, with a 2-week washout period between treatments. Appetite profile, active glucagon-like peptide 1 (GLP-1) and peptide YY3-36 (PYY) concentrations and energy intake were assessed on days 0 and 13 of the treatment period. Time × treatment interaction revealed a trend of reduction in energy intake over days 0–13 by oligofructose (P = 0·068). Energy intake was significantly reduced (11 %) over time on day 13 compared with day 0 with 16 g/d oligofructose (2801 (sem 301) v. 3217 (sem 320) kJ, P < 0·05). Moreover, energy intake was significantly lower with 16 g/d oligofructose compared with 10 g/d oligofructose on day 13 (2801 (sem 301) v. 3177 (sem 276) kJ, P < 0·05). Area under the curve (AUC) for GLP-1 on day 13 was significantly higher with 16 g/d oligofructose compared with 10 g/d oligofructose (45 (sem 4) v. 41 (sem 3) pmol/l × h, P < 0·05). In the morning until lunch, AUC0–230 min for PYY on day 13 was significantly higher with 16 g/d oligofructose compared with 10 g/d oligofructose and placebo (409 (sem 35) v. 222 (sem 19) and 211 (sem 20) pg/ml × h, P < 0·01). In conclusion, 16 g/d and not 10 g/d oligofructose may be an effective dose to reduce energy intake, possibly supported by higher GLP-1 and PYY concentrations.


2011 ◽  
Vol 105 (9) ◽  
pp. 1320-1328 ◽  
Author(s):  
Robert E. Steinert ◽  
Florian Frey ◽  
Antonia Töpfer ◽  
Jürgen Drewe ◽  
Christoph Beglinger

In vitro,both carbohydrate sugars and artificial sweeteners (AS) stimulate the secretion of glucagon-like peptide-1 (GLP-1). It has been suggested that the gut tastes sugars and AS through the same mechanisms as the tongue, with potential effects on gut hormone release. We investigated whether the human gut responds in the same way to AS and carbohydrate sugars, which are perceived by lingual taste as equisweet. We focused on the secretion of gastrointestinal (GI) satiety peptides in relation to appetite perception. We performed a placebo-controlled, double-blind, six-way, cross-over trial including twelve healthy subjects. On separate days, each subject received an intragastric infusion of glucose, fructose or an AS (aspartame, acesulfame K and sucralose) dissolved in 250 ml of water or water only (control). In a second part, four subjects received an intragastric infusion of the non-sweet, non-metabolisable sugar analogue 2-deoxy-d-glucose. Glucose stimulated GLP-1 (P = 0·002) and peptide tyrosine tyrosine (PYY;P = 0·046) secretion and reduced fasting plasma ghrelin (P = 0·046), whereas fructose was less effective. Both carbohydrate sugars increased satiety and fullness (albeit not significantly) compared with water. In contrast, equisweet loads of AS did not affect gastrointestinal peptide secretion with minimal effects on appetite. 2-Deoxy-d-glucose increased hunger ratings, however, with no effects on GLP-1, PYY or ghrelin. Our data demonstrate that the secretion of GLP-1, PYY and ghrelin depends on more than the detection of (1) sweetness or (2) the structural analogy to glucose.


2005 ◽  
Vol 288 (6) ◽  
pp. R1477-R1485 ◽  
Author(s):  
Ixchel M. Brennan ◽  
Kate L. Feltrin ◽  
Michael Horowitz ◽  
Andre J. P. M. Smout ◽  
James H. Meyer ◽  
...  

There is evidence that CCK and glucagon-like peptide-1 (GLP-1) mediate the effects of nutrients on appetite and gastrointestinal function and that their interaction may be synergistic. We hypothesized that intravenous CCK-8 and GLP-1 would have synergistic effects on appetite, energy intake, and antropyloroduodenal (APD) motility. Nine healthy males (age 22 ± 1 yr) were studied on four separate days in a double-blind, randomized fashion. Appetite and APD pressures were measured during 150-min intravenous infusions of 1) isotonic saline (control), 2) CCK-8 (1.8 pmol·kg−1·min−1), 3) GLP-1 (0.9 pmol·kg−1·min−1), or 4) both CCK-8 (1.8 pmol·kg−1·min−1) and GLP-1 (0.9 pmol·kg−1·min−1). At 120 min, energy intake at a buffet meal was quantified. CCK-8, but not GLP-1, increased fullness, decreased desire to eat and subsequent energy intake, and increased the number and amplitude of isolated pyloric pressure waves and basal pyloric pressure ( P < 0.05). Both CCK-8 and GLP-1 decreased the number of antral and duodenal pressure waves (PWs) ( P < 0.05), and CCK-8+GLP-1 decreased the number of duodenal PWs more than either CCK-8 or GLP-1 alone ( P < 0.02). This was not the case for appetite or isolated pyloric PWs. In conclusion, at the doses evaluated, exogenously administered CCK-8 and GLP-1 had discrepant effects on appetite, energy intake, and APD pressures, and the effects of CCK-8+GLP-1, in combination, did not exceed the sum of the effects of CCK-8 and GLP-1, providing no evidence of synergism.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1962 ◽  
Author(s):  
Ryan Jalleh ◽  
Hung Pham ◽  
Chinmay S. Marathe ◽  
Tongzhi Wu ◽  
Madeline D. Buttfield ◽  
...  

Glucagon-like peptide-1 receptor agonists induce weight loss, which has been suggested to relate to the slowing of gastric emptying (GE). In health, energy intake (EI) is more strongly related to the content of the distal, than the total, stomach. We evaluated the effects of lixisenatide on GE, intragastric distribution, and subsequent EI in 15 healthy participants and 15 patients with type 2 diabetes (T2D). Participants ingested a 75-g glucose drink on two separate occasions, 30 min after lixisenatide (10 mcg) or placebo subcutaneously, in a randomised, double-blind, crossover design. GE and intragastric distribution were measured for 180 min followed by a buffet-style meal, where EI was quantified. Relationships of EI with total, proximal, and distal stomach content were assessed. In both groups, lixisenatide slowed GE markedly, with increased retention in both the proximal (p < 0.001) and distal (p < 0.001) stomach and decreased EI (p < 0.001). EI was not related to the content of the total or proximal stomach but inversely related to the distal stomach at 180 min in health on placebo (r = −0.58, p = 0.03) but not in T2D nor after lixisenatide in either group. In healthy and T2D participants, the reduction in EI by lixisenatide is unrelated to changes in GE/intragastric distribution, consistent with a centrally mediated effect.


2005 ◽  
Vol 289 (4) ◽  
pp. R1090-R1098 ◽  
Author(s):  
Tanya J. Little ◽  
Kate L. Feltrin ◽  
Michael Horowitz ◽  
Andre J. P. M. Smout ◽  
Thomas Rades ◽  
...  

We recently reported that intraduodenal infusion of lauric acid (C12) (0.375 kcal/min, 106 mM) stimulates isolated pyloric pressure waves (IPPWs), inhibits antral and duodenal pressure waves (PWs), stimulates release of cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1), and suppresses energy intake and that these effects are much greater than those seen in response to isocaloric decanoic acid (C10) infusion. Administration of C12 was, however, associated with nausea, confounding interpretation of the results. The aim of this study was to evaluate the effects of different intraduodenal doses of C12 on antropyloroduodenal (APD) motility, plasma CCK and GLP-1 concentrations, appetite, and energy intake. Thirteen healthy males were studied on 4 days in double-blind, randomized fashion. APD pressures, plasma CCK and GLP-1 concentrations, and appetite perceptions were measured during 90-min ID infusion of C12 at 0.1 (14 mM), 0.2 (28 mM), or 0.4 (56 mM) kcal/min or saline (control; rate 4 ml/min). Energy intake was determined at a buffet meal immediately following infusion. C12 dose-dependently stimulated IPPWs, decreased antral and duodenal motility, and stimulated secretion of CCK and GLP-1 ( r > 0.4, P < 0.05 for all). C12 (0.4 kcal/min) suppressed energy intake compared with control, C12 (0.1 kcal/min), and C12 (0.2 kcal/min) ( P < 0.05). These effects were observed in the absence of nausea. In conclusion, intraduodenal C12 dose-dependently modulated APD motility and gastrointestinal hormone release in healthy male subjects, whereas effects on energy intake were only apparent with the highest dose infused (0.4 kcal/min), possibly because only at this dose was modulation of APD motility and gastrointestinal hormone secretion sufficient for a suppressant effect on energy intake.


2006 ◽  
Vol 290 (3) ◽  
pp. R668-R677 ◽  
Author(s):  
Amelia N. Pilichiewicz ◽  
Tanya J. Little ◽  
Ixchel M. Brennan ◽  
James H. Meyer ◽  
Judith M. Wishart ◽  
...  

Enterally administered lipid modulates antropyloroduodenal motility, gut hormone release, appetite, and energy intake. We hypothesized that these effects would be dependent on both the load, and duration, of small intestinal exposure to lipid. Eleven healthy men were studied on four occasions in a double-blind, randomized, fashion. Antropyloroduodenal motility, plasma CCK and peptide YY (PYY) concentrations, and appetite perceptions were measured during intraduodenal infusion of lipid (Intralipid) at 1) 1.33 kcal/min for 50 min, 2) 4 kcal/min for 50 min, and 3) 1.33 kcal/min for 150 min, or 4) saline for 150 min. Immediately after the infusions, energy intake was quantified. Pressure wave sequences (PWSs) were suppressed, and basal pyloric pressure, isolated pyloric pressure waves (IPPWs), plasma CCK and PYY stimulated (all P < 0.05), during the first 50 min of lipid infusion, in a load-dependent fashion. The effect of the 4 kcal/min infusion was sustained so that the suppression of antral pressure waves (PWs) and PWSs and increase in PYY remained evident after cessation of the infusion (all P < 0.05). The prolonged lipid infusion (1.33 kcal/min for 150 min) suppressed antral PWs, stimulated CCK and PYY and basal pyloric pressure (all P < 0.05), and tended to stimulate IPPWs when compared with saline throughout the entire infusion period. There was no significant effect of any of the lipid infusions on appetite or energy intake, although nausea was slightly higher ( P < 0.05) with the 4 kcal/min infusion. In conclusion, both the load, and duration, of small intestinal lipid influence antropyloroduodenal motility and patterns of CCK and PYY release.


2007 ◽  
Vol 293 (5) ◽  
pp. G963-G971 ◽  
Author(s):  
Wendell J. Lu ◽  
Qing Yang ◽  
William Sun ◽  
Stephen C. Woods ◽  
David D'Alessio ◽  
...  

Glucagon-like peptide-1 (GLP-1) is an important incretin produced in the L cells of the intestine. It is essential in the regulation of insulin secretion and glucose homeostasis. Systemic GLP-1 concentrations are typically low in rodents, so it can be difficult to assay physiological levels or detect changes in response to nutrients. We have established a method of assaying GLP-1 in response to nutrients using the intestinal lymph fistula model. Intraduodenal infusion of Intralipid (4.43 kcal/3 ml) induced a significant increase of lymphatic GLP-1 concentration compared with saline control at the peak of 30 min. ( P < 0.001). Isocaloric and isovolumetric treatment with dextrin, a glucose polymer, also caused a significant fourfold increase in peak concentration at 60 min ( P = 0.001). These findings indicate that intestinal lymph contains high concentrations of postprandial GLP-1. Second, they reveal that GLP-1 secretion into lymph occurs in response to both enteral carbohydrate and fat, but the response to dextrin occurs later than to Intralipid with peak times at 60 and 30 min, respectively. Third, the combination of Intralipid plus dextrin demonstrated an additive effect in the stimulation of GLP-1 with peak at 30 min. These results indicate that assessment of levels in lymph is a novel and powerful means of studying the secretion of GLP-1 and potentially other gastrointestinal hormones in vivo. Furthermore, the lymph fistula rat model provides insight into the gut hormone concentrations to which the neurons and cells in the lamina propria of the gut are likely exposed.


2015 ◽  
Vol 308 (4) ◽  
pp. R300-R304 ◽  
Author(s):  
Sina S. Ullrich ◽  
Bärbel Otto ◽  
Amy T. Hutchison ◽  
Natalie D. Luscombe-Marsh ◽  
Michael Horowitz ◽  
...  

Intraduodenal infusion of lipid or protein potently reduces subsequent energy intake. There is evidence that the underlying mechanisms differ significantly between the two nutrients. While intraduodenal lipid stimulates glucagon-like peptide-1 and CCK much more than protein, the release of insulin and glucagon is substantially greater in response to protein. Ghrelin and PYY are both involved in short-term regulation, while leptin is a long-term regulator, of energy balance; the acute effects of nutrients on leptin release are unclear. We investigated the comparative effects of intraduodenal lipid and protein on plasma ghrelin, PYY, and leptin concentrations. Thirteen lean, young men received 90-min intraduodenal infusions of protein (whey hydrolysate) or lipid (long-chain triglyceride emulsion) at a rate of 3 kcal/min, or saline control, on three separate days. Blood samples were collected at baseline and regularly during infusions. Both lipid and protein potently suppressed plasma ghrelin compared with control (both P < 0.001), with no difference between them. While both lipid and protein stimulated plasma PYY ( P < 0.001), the effect of lipid was substantially greater than that of protein ( P < 0.001). Neither intraduodenal lipid nor protein affected plasma leptin. In conclusion, intraduodenal lipid and protein have discrepant effects on the release of PYY, but not ghrelin. When considered with our previous findings, it appears that, with the exception of ghrelin, the energy intake-suppressant effects of lipid and protein are mediated by different mechanisms.


Sign in / Sign up

Export Citation Format

Share Document