Altered sleep and behavioral activity phenotypes in PER3-deficient mice

2011 ◽  
Vol 301 (6) ◽  
pp. R1821-R1830 ◽  
Author(s):  
Sibah Hasan ◽  
Daan R. van der Veen ◽  
Raphaelle Winsky-Sommerer ◽  
Derk-Jan Dijk ◽  
Simon N. Archer

Sleep homeostasis and circadian rhythmicity interact to determine the timing of behavioral activity. Circadian clock genes contribute to circadian rhythmicity centrally and in the periphery, but some also have roles within sleep regulation. The clock gene Period3 ( Per3) has a redundant function within the circadian system and is associated with sleep homeostasis in humans. This study investigated the role of PER3 in sleep/wake activity and sleep homeostasis in mice by recording wheel-running activity under baseline conditions in wild-type (WT; n = 54) and in PER3-deficient ( Per3−/−; n = 53) mice, as well as EEG-assessed sleep before and after 6 h of sleep deprivation in WT ( n = 7) and Per3−/− ( n = 8) mice. Whereas total activity and vigilance states did not differ between the genotypes, the temporal distribution of wheel-running activity, vigilance states, and EEG delta activity was affected by genotype. In Per3−/− mice, running wheel activity was increased, and REM sleep and NREM sleep were reduced in the middle of the dark phase, and delta activity was enhanced at the end of the dark phase. At the beginning of the baseline light period, there was less wakefulness and more REM and NREM sleep in Per3−/− mice. Per3−/− mice spent less time in wakefulness and more time in NREM sleep in the light period immediately after sleep deprivation, and REM sleep accumulated more slowly during the recovery dark phase. These data confirm a role for PER3 in sleep-wake timing and sleep homeostasis.

1985 ◽  
Vol 248 (3) ◽  
pp. R320-R330 ◽  
Author(s):  
G. S. Richardson ◽  
M. C. Moore-Ede ◽  
C. A. Czeisler ◽  
W. C. Dement

Circadian rhythms of wheel-running activity and polygraphically defined wakefulness, rapid-eye-movement (REM) sleep and non-REM (NREM) sleep were continuously observed in ten mice (Mus musculus) under both alternating light-dark (LD 12:12) and continuous darkness (DD) conditions. Sleep-wake state was determined automatically using a computer-based method that allowed continuous recordings of from 60 to 280 days in duration. The sleep-wake state percentages (of the circadian cycle) thus obtained were in substantial agreement with other estimates for this or similar strains and showed no significant difference between LD 12:12 (wake 54.3%, NREM sleep 38.1%, REM sleep 7.6%) and DD (wake 53.1%, NREM sleep 39.9%, REM sleep 7.0%) conditions. All 10 mice exhibited clear circadian rhythms in each of the three states and wheel-running activity under both lighting conditions for the entire duration of observation. Probability functions, computed using stationary sections of data from all 10 mice, showed distinct waveforms for all three states and wheel running. These waveforms were remarkably similar under entrained and free-running conditions. This documentation of sustained circadian rhythmicity in sleep-wake state throughout observations of unprecedented length contradicts the currently common assertion that circadian control of sleep state is weaker than that of activity.


SLEEP ◽  
2019 ◽  
Vol 43 (6) ◽  
Author(s):  
Sjoerd J van Hasselt ◽  
Maria Rusche ◽  
Alexei L Vyssotski ◽  
Simon Verhulst ◽  
Niels C Rattenborg ◽  
...  

Abstract Most of our knowledge about the regulation and function of sleep is based on studies in a restricted number of mammalian species, particularly nocturnal rodents. Hence, there is still much to learn from comparative studies in other species. Birds are interesting because they appear to share key aspects of sleep with mammals, including the presence of two different forms of sleep, i.e. non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. We examined sleep architecture and sleep homeostasis in the European starling, using miniature dataloggers for electroencephalogram (EEG) recordings. Under controlled laboratory conditions with a 12:12 h light–dark cycle, the birds displayed a pronounced daily rhythm in sleep and wakefulness with most sleep occurring during the dark phase. Sleep mainly consisted of NREM sleep. In fact, the amount of REM sleep added up to only 1~2% of total sleep time. Animals were subjected to 4 or 8 h sleep deprivation to assess sleep homeostatic responses. Sleep deprivation induced changes in subsequent NREM sleep EEG spectral qualities for several hours, with increased spectral power from 1.17 Hz up to at least 25 Hz. In contrast, power below 1.17 Hz was decreased after sleep deprivation. Sleep deprivation also resulted in a small compensatory increase in NREM sleep time the next day. Changes in EEG spectral power and sleep time were largely similar after 4 and 8 h sleep deprivation. REM sleep was not noticeably compensated after sleep deprivation. In conclusion, starlings display signs of NREM sleep homeostasis but the results do not support the notion of important REM sleep functions.


2019 ◽  
Author(s):  
Brandon M. Chelette ◽  
Abigail Thomas ◽  
Debra Ann Fadool

ABSTRACTVoluntary exercise is frequently employed as an intervention for obesity. The voltage-gated potassium Kv1.3 is also receiving attention as a therapeutic target for obesity, in addition to potential therapeutic capabilities for neuroinflammatory diseases. To investigate combinatorial effects of these two therapies, we have compared the metabolic status and voluntary exercise behavior of both wildtype mice and a transgenic line of mice that are genetic knockouts for Kv1.3 when provided with a running wheel and maintained on diets of differing fat content and caloric density. We tracked metabolic parameters and wheel running behavior while maintaining the mice on their assigned treatment for 6 months. Wildtype mice maintained on the fatty diet gain a significant amount of bodyweight and adipose tissue and display significantly impaired glucose tolerance, though all these effects were partially reduced with provision of a running wheel. Similarly to previous studies, the Kv1.3-null mice were resistant to obesity, increased adiposity, and impaired glucose tolerance. Both wildtype and Kv1.3-null mice maintained on the fatty diet displayed increased wheel running activity compared to CF-fed mice which was caused primarily by a significant increase in amount of time spent running as opposed to an increase in running velocity. Interestingly, the patterns of running behavior differ between wildtype and Kv1.3-null mice, especially in how their resting periods are distributed through the dark phase. These studies indicate that voluntary exercise combats metabolic maladies and running behavior is modified by both consumption of an obesogenic diet and deletion of the Kv1.3 channel.NEW and NOTEWORTHYKv1.3-null mice exhibit different running and resting patterns compared to wildtype miceMice maintained on an obesogenic diet (32% kcal from fat) exhibit increased running distance and increased time spent running compared to mice fed normal rodent chow.


1991 ◽  
Vol 261 (4) ◽  
pp. R819-R827 ◽  
Author(s):  
G. A. Kennedy ◽  
G. J. Coleman ◽  
S. M. Armstrong

The effect of daily restricted feeding (RF) on the circadian wheel-running rhythms of the kowari, Dasyuroides byrnei, was examined in two experiments. Kowaris were presented with a preferred food (determined in a pilot study) during a daily 2-h meal in the light period of a 14:10 light-dark (LD) cycle (expts 1 and 2), during constant dark (DD) immediately after termination of the LD cycle (expt 1), and during DD when kowaris were free running (expt 1). Results showed that 1) RF elicited anticipatory activity similar in duration and phasing to that observed in the rat; 2) cycles of meal-associated activity free ran for up to 6 days after the termination of RF; 3) activity persists at a phase near that of the former mealtime during periods of food deprivation; and 4) activity indicative of beating between two pacemakers occurred when feeding was restricted to the L period of LD cycles. Together these observations suggest that the activity rhythms of the kowari may be controlled by separate, but possibly coupled, light-entrainable and food-entrainable pacemakers, as are those of the rat.


2017 ◽  
Vol 32 (5) ◽  
pp. 444-455 ◽  
Author(s):  
Yun-Wei A. Hsu ◽  
Jennifer J. Gile ◽  
Jazmine G. Perez ◽  
Glenn Morton ◽  
Miriam Ben-Hamo ◽  
...  

In nocturnal rodents, voluntary wheel-running activity (WRA) represents a self-reinforcing behavior. We have previously demonstrated that WRA is markedly reduced in mice with a region-specific deletion of the transcription factor Pou4f1 (Brn3a), which leads to an ablation of the dorsal medial habenula (dMHb). The decrease in WRA in these dMHb-lesioned (dMHbCKO) mice suggests that the dMHb constitutes a critical center for conveying reinforcement by exercise. However, WRA also represents a prominent output of the circadian system, and the possibility remains that the dMHb is a source of input to the master circadian pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus. To test this hypothesis, we assessed the integrity of the circadian system in dMHbCKO mice. Here we show that the developmental lesion of the dMHb reduces WRA under both a light-dark cycle and constant darkness, increases the circadian period of WRA, but has no effect on the circadian amplitude or period of home cage activity or the daily amplitude of sleep stages, suggesting that the lengthening of period is a result of the decreased WRA in the mutant mice. Polysomnographic sleep recordings show that dMHbCKO mice have an overall unaltered daily amplitude of sleep stages but have fragmented sleep and an overall increase in total rapid eye movement (REM) sleep. Photoresponsiveness is intact in dMHbCKO mice, but compared with control animals, they reentrain faster to a 6-h abrupt phase delay protocol. Circadian changes in WRA of dMHbCKO mice do not appear to emerge within the central pacemaker, as circadian expression of the clock genes Per1 and Per2 within the SCN is normal. We do find some evidence for fragmented sleep and an overall increase in total REM sleep, supporting a model in which the dMHb is part of the neural circuitry encoding motivation and involved in the manifestation of some of the symptoms of depression.


2013 ◽  
Vol 305 (12) ◽  
pp. R1433-R1440 ◽  
Author(s):  
Stefano Guidotti ◽  
Izabella Jónás ◽  
Kristin A. Schubert ◽  
Theodore Garland ◽  
Harro A. J. Meijer ◽  
...  

Feeding a diet high in fat and sucrose (HFS) during pregnancy and lactation is known to increase susceptibility to develop metabolic derangements later in life. A trait for increased behavioral activity may oppose these effects, since this would drain energy from milk produced to be made available to the offspring. To investigate these interactions, we assessed several components of behavioral energetics during lactation in control mice (C) and in mice of two lines selectively bred for high wheel-running activity (S1, S2) subjected to a HFS diet or a low-fat (LF) diet. Energy intake, litter growth, and milk energy output at peak lactation (MEO; assessed by subtracting maternal metabolic rate from energy intake) were elevated in HFS-feeding dams across all lines compared with the LF condition, an effect that was particularly evident in the S dams. This effect was not preceded by improved lactation behaviors assessed between postnatal days 1 and 7 (PND 1–7). In fact, S1 dams had less high-quality nursing, and S2 dams showed poorer pup retrieval than C dams during PND 1–7, and S dams had generally higher levels of physical activity at peak lactation. These data demonstrate that HFS feeding increases MEO underlying increased litter and pup growth, particularly in mice with a trait for increased behavioral physical activity.


1993 ◽  
Vol 264 (6) ◽  
pp. R1125-R1132 ◽  
Author(s):  
I. Tobler ◽  
P. Franken ◽  
K. Jaggi

Vigilance states, electroencephalogram (EEG) power spectra (0.25-25.0 Hz), and cortical temperature (TCRT) were obtained in nine guinea pigs for 24 h in a 12:12-h light-dark (LD 12:12) schedule. Sleep was markedly polyphasic and fragmented and amounted to 32% of recording time, which is a low value compared with sleep in other rodents. There was 6.8% more sleep in the light period than in the dark period. EEG power density in non-rapid eye movement (NREM) sleep showed no significant temporal trend within the light or the dark period. The homeostatic aspects of sleep regulation, as proposed in the two-process model, can account for the slow-wave activity (SWA) pattern also in the guinea pig: The small 24-h amplitude of the sleep-wakefulness pattern resulted in a small, 12% decline of SWA within the light period. In contrast to more distinctly nocturnal rodents, SWA in the dark period was not higher than in the light period. TCRT showed no difference between the light and the dark period. TCRT in REM sleep and waking was higher than TCRT in NREM sleep. TCRT increased after the transition from NREM sleep to either REM sleep or waking, and decreased in the last minute before the transition and after the transition from waking to NREM sleep. Motor activity measured in six animals for 11 days in constant darkness showed no apparent rhythm in three animals and a significant circadian rhythm in three others. Our data support the notion that guinea pigs exhibit only a weak circadian rest-activity rhythm.


Sign in / Sign up

Export Citation Format

Share Document