Wavelet analysis of instantaneous heart rate: a study of autonomic control during thrombolysis

2003 ◽  
Vol 284 (4) ◽  
pp. R1079-R1091 ◽  
Author(s):  
Eran Toledo ◽  
Osnat Gurevitz ◽  
Hanoch Hod ◽  
Michael Eldar ◽  
Solange Akselrod

Myocardial infarction (MI) is known to elicit activation of the autonomic nervous system. Reperfusion, induced by thrombolysis, is thus expected to bring about a shift in the balance between the sympathetic and vagal systems, according to the infarct location. In this study, we explored the correlation between reperfusion and the spectral components of heart rate (HR) variability (HRV), which are associated with autonomic cardiac control. We analyzed the HR of patients during thrombolysis: nine anterior wall MI (AW-MI) and eight inferoposterior wall MI (IW-MI). Reperfusion was determined from changes in ST levels and reported pain. Reocclusion was detected in four patients. HRV was analyzed using a modified continuous wavelet transform, which provided time-dependent versions of the typically used low-frequency (LF) and high-frequency (HF) peaks and of their ratio, LF/HF. Marked alterations in at least one of the HRV parameters was found in all 18 reperfusion events. Patterns of HRV, compatible with a shift toward relative sympathetic enhancement, were found in all of the nine reperfusion events in IW-MI patients and in three AW-MI patients. Patterns of HRV compatible with relative vagal enhancement were found in six AW-MI patients ( P < 0.001). Significant changes in HRV parameters were also found after reocclusion. Time-dependent spectral analysis of HRV using the wavelet transform was found to be valuable for explaining the patterns of cardiac rate control during reperfusion. In addition, examination of the entire record revealed epochs of markedly diminished HRV in two patients, which we attribute to vagal saturation.

Author(s):  
Samruddhi Chintaman Vyas ◽  
A. Mooventhan ◽  
N. K. Manjunath

AbstractBackgroundThough hot arm and foot bath (HAFB) is widely used, a precise physiological response is not reported. Hence, the present study was conducted to evaluate the effect of HAFB on heart rate variability (HRV) and blood pressure (BP) in healthy volunteers.Materials and MethodsSixteen healthy male volunteers’ aged 23.81 ± 5.27 (mean ± standard deviation) years were recruited. All the subjects underwent only one session of HAFB (104-degree Fahrenheit) for the duration of 20 min. Assessments such as Electrocardiography and BP were taken before and after the intervention.ResultsResults of this study showed a significant reduction in systolic-BP (SBP), diastolic-BP (DBP), mean arterial pressure (MAP), the mean of the intervals between adjacent QRS complexes or the instantaneous heart rate (RR interval), the number of interval differences of successive NN intervals greater than 50 ms (NN50), the proportion derived by dividing NN50 by the total number of NN intervals (pNN50), and high frequency (HF) band of HRV along with a significant increase in heart rate (HR), low-frequency (LF) band of HRV and LF/HF ratio compared to its baseline.ConclusionsResults of this study suggest that 20 min of HAFB produce a significant increase in HR and a significant reduction in SBP, DBP, and MAP while producing parasympathetic withdrawal.


1997 ◽  
Vol 272 (2) ◽  
pp. H835-H842 ◽  
Author(s):  
D. R. Grimm ◽  
R. E. De Meersman ◽  
P. L. Almenoff ◽  
A. M. Spungen ◽  
W. A. Bauman

This study investigated the effect of abnormal autonomic cardiovascular function on heart rate variability (HRV) in individuals classified into four groups: complete quadriplegia, incomplete quadriplegia, low paraplegia, and non-spinal cord injury (SCI) controls. Measurements were collected at baseline and during provocative maneuvers. Spectral analysis using a fast-Fourier transform algorithm revealed two spectral components of HRV, termed low frequency (LF) and high frequency (HF); the LF-to-HF ratio (estimate of sympathovagal balance) was also calculated. Each group of subjects with quadriplegia exhibited significantly lower spectral components for both baseline and composite provocative measures compared with the non-SCI controls (P < 0.05). In addition, the group with paraplegia demonstrated significantly lower HF baseline and LF composite levels than controls (P < 0.05). No differences were observed among all groups for the LF-to-HF ratio. This consistency in the LF-to-HF ratio suggests that the two autonomic divisions that regulate the cardiovascular system maintain homeostasis even when one component is severely compromised. This is supported by the additional findings of decreased parasympathetic activity in the two groups with quadriplegia and the absence of significant differences among any of the four groups at rest in either heart rate or blood pressure.


1993 ◽  
Vol 85 (4) ◽  
pp. 389-392 ◽  
Author(s):  
D. C. Galletly ◽  
P. D. Tobin ◽  
B.J. Robinson ◽  
T. Corfiatis

1. Periodicities in cardiac interbeat interval may be resolved into discrete frequency components by applying Fourier analysis to heart rate time series. Low-frequency components (<0.15 Hz) are believed to be under parasympathetic and sympathetic control, whereas a higher frequency component in phase with respiration is believed to be entirely parasympathetic. The ratio of the power in the low-/high-frequency spectrum gives an estimate of sympathetic/para-sympathetic balance. 2. This study examined, using heart rate variability spectral analysis, the cardiac autonomic effects of breathing 30% N2O in normal subjects. While supine, the inhalation of N2O caused a significant fall in high-frequency power and a rise in the low-/high-frequency spectrum. During air breathing, tilting caused a significant rise in the mean blood pressure, heart rate, low-frequency power and low-/high-frequency spectrum. During N2O breathing, tilting caused a rise in the heart rate and the mean blood pressure, but no significant alteration in the power of individual spectral components. During tilting, the heart rate, the low-frequency and low-/high-frequency spectrum were less when breathing N2O than when breathing air. 3. These observations are consistent with the effect of N2O being an enhanced sympathetic balance of sinoatrial control, with the primary effect being through reduced parasympathetic tone. Enhanced sympathetic dominance of heart rate variability was seen on standing while subjects breathed air, but this effect was blunted with N2O.


2014 ◽  
Vol 27 (3) ◽  
pp. 389-397 ◽  
Author(s):  
Elizângela Márcia de Carvalho Abreu ◽  
Tatiana Sousa Cunha ◽  
Alderico Rodrigues de Paula Júnior ◽  
Marco Antonio de Oliveira

Objective To evaluate the effect of Global Postural Reeducation (GPR) on cardiovascular system by heart rate variability (HRV), blood pressure (BP) and heart rate (HR). Materials and methods Seventeen healthy men (22.47 ± 3.02 years) were submitted to the postures frog on the floor, frog on the air, sitting, standing against the wall and inclined standing, two postures per session. The systolic and diastolic blood pressure (SBP and DBP) and HR were recorded. The intervals between heartbeats were collected during the whole session (Polar S810i). The frequency domain was analyzed (Wavelet Transform), the low frequency (LF) and high frequency (HF) were obtained. The data were analyzed by ANOVA and Tukey (p < 0.05). Results Increased LF/HF ratio was observed in the frog on the floor (1 ± 0.1 vs. 2 ± 0.3 p < 0.05) and on the air postures (1 ± 0.1 vs. 2 ± 0.2 p < 0.01). There was an increase in SBP in the postures frog on the floor (123 ± 2 vs. 136 ± 4 p < 0.05), frog on the air (122 ± 2 vs. 133 ± 3 p < 0.05), standing against the wall (123 ± 2 vs. 136 ± 4 p < 0.05), inclined standing (124 ± 3 vs. 146 ± 5 p < 0.05). There was increase of DBP in the postures frog on the floor (69 ± 2 vs. 81 ± 2 p < 0.01), frog on the air (72 ± 2 vs. 83 ± 3 p < 0.05), sitting (85 ± 2 vs. 102 ± 3 p < 0.01). There was increase in HR in the postures frog on the air (67 ± 2 vs. 77 ± 3 p < 0.05) and inclined standing (88 ± 3.5 vs. 101 ± 3 p < 0.05). Conclusion The increase in LF/HF ratio and also the BP and HR indicates high sympathetic activity, possibly related to the work isometric developed during GPR method. [P]


2014 ◽  
Vol 14 (2) ◽  
pp. 102-108 ◽  
Author(s):  
Yong Yang ◽  
Shuying Huang ◽  
Junfeng Gao ◽  
Zhongsheng Qian

Abstract In this paper, by considering the main objective of multi-focus image fusion and the physical meaning of wavelet coefficients, a discrete wavelet transform (DWT) based fusion technique with a novel coefficients selection algorithm is presented. After the source images are decomposed by DWT, two different window-based fusion rules are separately employed to combine the low frequency and high frequency coefficients. In the method, the coefficients in the low frequency domain with maximum sharpness focus measure are selected as coefficients of the fused image, and a maximum neighboring energy based fusion scheme is proposed to select high frequency sub-bands coefficients. In order to guarantee the homogeneity of the resultant fused image, a consistency verification procedure is applied to the combined coefficients. The performance assessment of the proposed method was conducted in both synthetic and real multi-focus images. Experimental results demonstrate that the proposed method can achieve better visual quality and objective evaluation indexes than several existing fusion methods, thus being an effective multi-focus image fusion method.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Reuben Howden ◽  
Eva Gougian ◽  
Marcus Lawrence ◽  
Samantha Cividanes ◽  
Wesley Gladwell ◽  
...  

Nrf2protects the lung from adverse responses to oxidants, including 100% oxygen (hyperoxia) and airborne pollutants like particulate matter (PM) exposure, but the role ofNrf2on heart rate (HR) and heart rate variability (HRV) responses is not known. We hypothesized that genetic disruption ofNrf2would exacerbate murine HR and HRV responses to severe hyperoxia or moderate PM exposures.Nrf2-/-andNrf2+/+mice were instrumented for continuous ECG recording to calculate HR and HRV (low frequency (LF), high frequency (HF), and total power (TP)). Mice were then either exposed to hyperoxia for up to 72 hrs or aspirated with ultrafine PM (UF-PM). Compared to respective controls, UF-PM induced significantly greater effects on HR (P<0.001) and HF HRV (P<0.001) inNrf2-/-mice compared toNrf2+/+mice.Nrf2-/-mice tolerated hyperoxia significantly less thanNrf2+/+mice (~22 hrs;P<0.001). Reductions in HR, LF, HF, and TP HRV were also significantly greater inNrf2-/-compared toNrf2+/+mice (P<0.01). Results demonstrate thatNrf2deletion increases susceptibility to change in HR and HRV responses to environmental stressors and suggest potential therapeutic strategies to prevent cardiovascular alterations.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Min Wang ◽  
Zhen Li ◽  
Xiangjun Duan ◽  
Wei Li

This paper proposes an image denoising method, using the wavelet transform and the singular value decomposition (SVD), with the enhancement of the directional features. First, use the single-level discrete 2D wavelet transform to decompose the noised image into the low-frequency image part and the high-frequency parts (the horizontal, vertical, and diagonal parts), with the edge extracted and retained to avoid edge loss. Then, use the SVD to filter the noise of the high-frequency parts with image rotations and the enhancement of the directional features: to filter the diagonal part, one needs first to rotate it 45 degrees and rotate it back after filtering. Finally, reconstruct the image from the low-frequency part and the filtered high-frequency parts by the inverse wavelet transform to get the final denoising image. Experiments show the effectiveness of this method, compared with relevant methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Joanne W. Y. Chung ◽  
Vincent C. M. Yan ◽  
Hongwei Zhang

Aim.To summarize all relevant trials and critically evaluate the effect of acupuncture on heart rate variability (HRV).Method.This was a systematic review with meta-analysis. Keyword search was conducted in 7 databases for randomized controlled trials (RCTs). Data extraction and risk of bias were done.Results.Fourteen included studies showed a decreasing effect of acupuncture on low frequency (LF) and low frequency to high frequency ratio (LF/HF ratio) of HRV for nonhealthy subjects and on normalized low frequency (LF norm) for healthy subjects. The overall effect was in favour of the sham/control group for high frequency (HF) in nonhealthy subjects and for normalized high frequency (HF norm) in healthy subjects. Significant decreasing effect on HF and LF/HF ratio of HRV when acupuncture was performed on ST36 among healthy subjects and PC6 among both healthy and nonhealthy subjects, respectively.Discussion.This study partially supports the possible effect of acupuncture in modulating the LF of HRV in both healthy and nonhealthy subjects, while previous review reported that acupuncture did not have any convincing effect on HRV in healthy subjects. More published work is needed in this area to determine if HRV can be an indicator of the therapeutic effect of acupuncture.


1997 ◽  
Vol 92 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Gervais Tougas ◽  
Markad Kamath ◽  
Geena Watteel ◽  
Debbie Fitzpatrick ◽  
Ernest L. Fallen ◽  
...  

1. The heart and the oesophagus have similar sensory pathways, and sensations originating from the oesophagus are often difficult to differentiate from those of cardiac origin. We hypothesized that oesophageal sensory stimuli could alter neurocardiac function through autonomic reflexes elicited by these oesophageal stimuli. In the present study, we examined the neurocardiac response to oesophageal stimulation and the effects of electrical and mechanical oesophageal stimulation on the power spectrum of beat-to-beat heart rate variability in male volunteers. 2. In 14 healthy volunteers, beat-to-beat heart rate variability was compared at rest and during oesophageal stimulation, using either electrical (200 μs, 16 mA, 0.2 Hz) or mechanical (0.5 s, 14 ml, 0.2 Hz) stimuli. The power spectrum of beat-to-beat heart rate variability was obtained and its low- and high-frequency components were determined. 3. Distal oesophageal stimulation decreased heart rate slightly (both electrical and mechanical) (P < 0.005), and markedly altered heart rate variability (P < 0.001). Both electrical and mechanical oesophageal stimulation increased the absolute and normalized area of the high-frequency band within the power spectrum (P < 0.001), while simultaneously decreasing the low-frequency power (P < 0.005). 4. In humans, oesophageal stimulation, whether electrical or mechanical, appears to amplify respiratory-driven cardiac vagoafferent modulation while decreasing sympathetic modulation. The technique provides access to vagoafferent fibres and thus may yield useful information on the autonomic effects of visceral or oesophageal sensory stimulation.


2021 ◽  
Vol 12 (4) ◽  
pp. 78-97
Author(s):  
Hassiba Talbi ◽  
Mohamed-Khireddine Kholladi

In this paper, the authors propose an algorithm of hybrid particle swarm with differential evolution (DE) operator, termed DEPSO, with the help of a multi-resolution transform named dual tree complex wavelet transform (DTCWT) to solve the problem of multimodal medical image fusion. This hybridizing approach aims to combine algorithms in a judicious manner, where the resulting algorithm will contain the positive features of these different algorithms. This new algorithm decomposes the source images into high-frequency and low-frequency coefficients by the DTCWT, then adopts the absolute maximum method to fuse high-frequency coefficients; the low-frequency coefficients are fused by a weighted average method while the weights are estimated and enhanced by an optimization method to gain optimal results. The authors demonstrate by the experiments that this algorithm, besides its simplicity, provides a robust and efficient way to fuse multimodal medical images compared to existing wavelet transform-based image fusion algorithms.


Sign in / Sign up

Export Citation Format

Share Document