Alamandine but not angiotensin-(1-7) produces cardiovascular effects at the rostral insular cortex

Author(s):  
Fernanda Ribeiro Marins ◽  
Aline Cristina Oliveira ◽  
Fatimunnisa Qadri ◽  
Daisy Motta-Santos ◽  
Natalia Alenina ◽  
...  

Experiments aimed to evaluate the tissue distribution of Mas-related G-protein coupled receptor D (MrgD) revealed the presence of immunoreactivity for the MrgD protein in the rostral insular cortex (rIC), an important area for autonomic and cardiovascular control. In order to investigate the relevance of this finding, we evaluated the cardiovascular effects produced by the endogenous ligand of MrgD, alamandine, in this brain region. Mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were recorded in urethane anesthetized rats. Unilateral microinjection of equimolar doses of alamandine (40pmol/100nl), angiotensin-(1-7), angiotensin II, angiotensin A and Mas/MrgD antagonist D-Pro7-Ang-1-7 (50pmol/100nl), Mas antagonist A779 (100pmol/100nl) or vehicle (0.9% NaCl) were made in different rats (N=4-6 per group) into rIC. To verify the specificity of the region, a microinjection of alamandine was also performed into intermediate insular cortex (iIC). Microinjection of alamandine in rIC produced an increase in MAP (Δ=15±2mmHg), HR (Δ=36±4bpm) and RSNA (Δ=31±4%), but was without effects at iIC. Strikingly, an equimolar dose of angiotensin-(1-7) at rIC did not produce any change in MAP, HR and RSNA. Angiotensin II and angiotensin A produced only minor effects. Alamandine effects were not altered by A-779, a Mas antagonist, but were completely blocked by the Mas/MrgD antagonist D-Pro7-Ang-(1-7). Therefore, we have identified a brain region in which alamandine/MrgD receptor but not angiotensin-(1-7)/Mas could be involved in the modulation of cardiovascular-related neuronal activity. This observation also suggests that alamandine might possess unique effects unrelated to angiotensin-(1-7) in the brain.

Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Fernanda R Marins ◽  
Aline C Oliveira ◽  
Fatimunnisa Qadri ◽  
Natalia Alenina ◽  
Michael Bader ◽  
...  

In the course of experiments aimed to evaluate the immunofluorescence distribution of MrgD receptors we observed the presence of immunoreactivity for the MrgD protein in the Insular Cortex. In order to evaluate the functional significance of this finding, we investigated the cardiovascular effects produced by the endogenous ligand of MrgD, alamandine, in this brain region. Urethane (1.4g/kg) anesthetized rats were instrumented for measurement of MAP, HR and renal sympathetic nerve activity (RSNA). Unilateral microinjection of alamandine (40 pmol/100nl), Angiotensin-(1-7) (40pmol/100nl), Mas/MrgD antagonista D-Pro7-Ang-1-7 (50pmol/100nl), Mas agonist A779 (100 pmol/100nl) or vehicle (0,9% NaCl) were made in different rats (N=4-6 per group) into posterior insular cortex (+1.5mm rostral to the bregma). Microinjection of alamandine in this region produced a long-lasting (> 18 min) increase in MAP (Δ saline= -2±1 vs. alamandine= 12±2 mmHg, p< 0.05) associated to increases in HR (Δ saline= 2±2 vs. alamandine= 35±5 bpm; p< 0.05) and in the amplitude of renal nerve discharges (Δ saline = -2±1 vs. alamandine= 35±5.5 % of the baseline; p< 0.05). Strikingly, an equimolar dose of angiotensin-(1-7) did not produce any change in MAP or HR (Δ MAP=-0.5±0.3 mmHg and +2.7±1.2 bpm, respectively; p> 0.05) and only a slight increase in RSNA (Δ =7.3±3.2 %) . In keeping with this observation the effects of alamandine were not significantly influenced by A-779 (Δ MAP=+13± 2.5 mmHg, Δ HR= +26±3.6 bpm; Δ RSNA = 25± 3.4%) but completely blocked by the Mas/MrgD antagonist D-Pro7-Ang-(1-7) (Δ MAP=+0 ± 1 mmHg Δ HR= +4±2.6 bpm; Δ RSNA = 0.5± 2.2 %). Therefore, we have identified a brain region in which alamandine/MrgD receptors but not Ang-(1-7)/Mas could be involved in the modulation of cardiovascular-related neuronal activity. This observation also suggests that alamandine might possess unique effects unrelated to Ang-(1-7) in the brain.


2008 ◽  
Vol 294 (3) ◽  
pp. R905-R914 ◽  
Author(s):  
Guadalupe Perfume ◽  
Sabrina L. Nabhen ◽  
Karla Riquelme Barrera ◽  
María G. Otero ◽  
Liliana G. Bianciotti ◽  
...  

Brain catecholamines are involved in the regulation of biological functions, including cardiovascular activity. The hypothalamus presents areas with high density of catecholaminergic neurons and the endothelin system. Two hypothalamic regions intimately related with the cardiovascular control are distinguished: the anterior (AHR) and posterior (PHR) hypothalamus, considered to be sympathoinhibitory and sympathoexcitatory regions, respectively. We previously reported that endothelins (ETs) are involved in the short-term tyrosine hydroxylase (TH) regulation in both the AHR and PHR. TH is crucial for catecholaminergic transmission and is tightly regulated by well-characterized mechanisms. In the present study, we sought to establish the effects and underlying mechanisms of ET-1 and ET-3 on TH long-term modulation. Results showed that in the AHR, ETs decreased TH activity through ETB receptor activation coupled to the nitric oxide, phosphoinositide, and CaMK-II pathways. They also reduced total TH level and TH phosphorylated forms (Ser 19 and 40). Conversely, in the PHR, ETs increased TH activity through a G protein-coupled receptor, likely an atypical ET receptor or the ETC receptor, which stimulated the phosphoinositide and adenylyl cyclase pathways, as well as CaMK-II. ETs also increased total TH level and the Ser 19, 31, and 40 phosphorylated sites of the enzyme. These findings support that ETs are involved in the long-term regulation of TH activity, leading to reduced sympathoinhibition in the AHR and increased sympathoexcitation in the PHR. Present and previous studies may partially explain the cardiovascular effects produced by ETs when applied to the brain.


1995 ◽  
Vol 269 (5) ◽  
pp. R1009-R1016 ◽  
Author(s):  
Y. Nishida ◽  
K. L. Ryan ◽  
V. S. Bishop

To test the hypothesis that angiotensin II (ANG II) modulates arterial baroreflex function via a central alpha 1-adrenoceptor mechanism, we examined the effects of intravertebral infusion of ANG II on baroreflex function curves before and after intravertebral administration of the alpha 1-adrenoreceptor antagonist prazosin. Rabbits were chronically instrumented with subclavian and vertebral arterial catheters, venous catheters, and aortic and vena caval occludes. Baroreflex curves were obtained by relating heart rate (HR) to mean arterial pressure during increases and decreases in arterial pressure. Intravertebral infusions of ANG II (5, 10, and 20 ng.kg-1.min-1) produced a dose-dependent shift of the midrange of the curve toward higher pressures (64 +/- 1 to 68 +/- 1, 76 +/- 1, and 85 +/- 2 mmHg, respectively). Pretreatment with prazosin (10 micrograms/kg) via the vertebral artery markedly reduced the shift in the baroreflex curve induced by the highest dose of ANG II (64 +/- 2 to 70 +/- 2 mmHg). These data suggest that ANG II resets the operating point of the HR baroreflex curve to a higher blood pressure and that this effect is mediated via a central alpha 1 mechanism. When the effects of vertebral ANG II on the baroreflex control of renal sympathetic nerve activity (RSNA) were examined, intravertebral administration of ANG II, while reducing the gain and the maximum RSNA, did not reset the RSNA baroreflex curve. These data suggest that ANG II acutely resets the HR baroreflex but not the RSNA baroreflex and that the resetting involves an alpha 1-adrenergic mechanism.


2000 ◽  
Vol 279 (4) ◽  
pp. H1804-H1812 ◽  
Author(s):  
Max G. Sanderford ◽  
Vernon S. Bishop

Acutely increasing peripheral angiotensin II (ANG II) reduces the maximum renal sympathetic nerve activity (RSNA) observed at low mean arterial blood pressures (MAPs). We postulated that this observation could be explained by the action of ANG II to acutely increase arterial blood pressure or increase circulating arginine vasopressin (AVP). Sustained increases in MAP and increases in circulating AVP have previously been shown to attenuate maximum RSNA at low MAP. In conscious rabbits pretreated with an AVP V1 receptor antagonist, we compared the effect of a 5-min intravenous infusion of ANG II (10 and 20 ng · kg−1 · min−1) on the relationship between MAP and RSNA when the acute pressor action of ANG II was left unopposed with that when the acute pressor action of ANG II was opposed by a simultaneous infusion of sodium nitroprusside (SNP). Intravenous infusion of ANG II resulted in a dose-related attenuation of the maximum RSNA observed at low MAP. When the acute pressor action of ANG II was prevented by SNP, maximum RSNA at low MAP was attenuated, similar to that observed when ANG II acutely increased MAP. In contrast, intravertebral infusion of ANG II attenuated maximum RSNA at low MAP significantly more than when administered intravenously. The results of this study suggest that ANG II may act within the central nervous system to acutely attenuate the maximum RSNA observed at low MAP.


2011 ◽  
Vol 16 (3) ◽  
pp. 382-388 ◽  
Author(s):  
Akio Nakamura ◽  
Akira Imaizumi ◽  
Takao Kohsaka ◽  
Chunlong Huang ◽  
Chunhua Huang ◽  
...  

1980 ◽  
Vol 59 (s6) ◽  
pp. 267s-269s ◽  
Author(s):  
Julianna E. Szilagyi ◽  
C. M. Ferrario

1. Intra-vertebral artery-administered angiotensin II acts at the area postrema to facilitate central sympathetic vasomotor activity. Recent evidence suggests a possible role of the opiate system in the mechanism of action of angiotensin II at the level of the brain stem. 2. In these experiments, we show that the morphine antagonist naloxone reduces significantly the magnitude of the pressor response to vertebral artery-infused angiotensin II. 3. Morphine, in contrast, doubled the peak of the vertebral response to identical doses of the peptide. Neither naloxone nor morphine affected the pressor responses to intravenously administered angiotensin II. 4. The data suggest that the endogenous opiate system in the medulla modulates the cardiovascular effects of angiotensin II at the level of the area postrema.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2988
Author(s):  
Zhen Zeng ◽  
Chunxiang Ma ◽  
Kexin Chen ◽  
Mingshan Jiang ◽  
Reshma Vasu ◽  
...  

It is well established that gastrointestinal (GI) cancers are common and devastating diseases around the world. Despite the significant progress that has been made in the treatment of GI cancers, the mortality rates remain high, indicating a real need to explore the complex pathogenesis and develop more effective therapeutics for GI cancers. G protein-coupled receptors (GPCRs) are critical signaling molecules involved in various biological processes including cell growth, proliferation, and death, as well as immune responses and inflammation regulation. Substantial evidence has demonstrated crucial roles of GPCRs in the development of GI cancers, which provided an impetus for further research regarding the pathophysiological mechanisms and drug discovery of GI cancers. In this review, we mainly discuss the roles of sphingosine 1-phosphate receptors (S1PRs), angiotensin II receptors, estrogen-related GPCRs, and some other important GPCRs in the development of colorectal, gastric, and esophageal cancer, and explore the potential of GPCRs as therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document