Medial prefrontal cortex endocannabinoid system modulates baroreflex activity through CB1 receptors

2012 ◽  
Vol 302 (7) ◽  
pp. R876-R885 ◽  
Author(s):  
Nilson C. Ferreira-Junior ◽  
Alessandra G. Fedoce ◽  
Fernando H. F. Alves ◽  
Fernando M. A. Corrêa ◽  
Leonardo B. M. Resstel

Neural reflex mechanisms, such as the baroreflex, are involved in the regulation of cardiovascular system activity. Previous results from our group (Resstel LB, Correa FM. Medial prefrontal cortex NMDA receptors and nitric oxide modulate the parasympathetic component of the baroreflex. Eur J Neurosci 23: 481–488, 2006) have shown that glutamatergic synapses in the ventral portion of the medial prefrontal cortex (vMPFC) modulate baroreflex activity. Moreover, glutamatergic neurotransmission in the vMPFC can be modulated by the endocannabinoids system (eCBs), particularly the endocannabinoid anandamide, through presynaptic CB1 receptor activation. Therefore, in the present study, we investigated eCBs receptors that are present in the vMPFC, and more specifically whether CB1 receptors modulate baroreflex activity. We found that bilateral microinjection of the CB1 receptor antagonist AM251 (100 or 300 pmol/200 nl) into the vMPFC increased baroreflex activity in unanesthetized rats. Moreover, bilateral microinjection of either the anandamide transporter inhibitor AM404 (100 pmol/200 nl) or the inhibitor of the enzyme fatty acid amide hydrolase that degrades anandamide, URB597 (100 pmol/200 nl), into the MPFC decreased baroreflex activity. Finally, pretreatment of the vMPFC with an ineffective dose of AM251 (10 pmol/200 nl) was able to block baroreflex effects of both AM404 and URB597. Taken together, our results support the view that the eCBs in the vMPFC is involved in the modulation of baroreflex activity through the activation of CB1 receptors, which modulate local glutamate release.

2021 ◽  
Vol 22 (3) ◽  
pp. 1047
Author(s):  
Dorsa Rafiei ◽  
Nathan J. Kolla

Altered activity of fatty acid amide hydrolase (FAAH), an enzyme of the endocannabinoid system, has been implicated in several neuropsychiatric disorders, including major depressive disorder (MDD). It is speculated that increased brain FAAH expression is correlated with increased depressive symptoms. The aim of this scoping review was to establish the role of FAAH expression in animal models of depression to determine the translational potential of targeting FAAH in clinical studies. A literature search employing multiple databases was performed; all original articles that assessed FAAH expression in animal models of depression were considered. Of the 216 articles that were screened for eligibility, 24 articles met inclusion criteria and were included in this review. Three key findings emerged: (1) FAAH expression is significantly increased in depressive-like phenotypes; (2) genetic knockout or pharmacological inhibition of FAAH effectively reduces depressive-like behavior, with a dose-dependent effect; and (3) differences in FAAH expression in depressive-like phenotypes were largely localized to animal prefrontal cortex, hippocampus and striatum. We conclude, based on the animal literature, that a positive relationship can be established between brain FAAH level and expression of depressive symptoms. In summary, we suggest that FAAH is a tractable target for developing novel pharmacotherapies for MDD.


2006 ◽  
Vol 49 (15) ◽  
pp. 4650-4656 ◽  
Author(s):  
Susanna M. Saario ◽  
Antti Poso ◽  
Risto O. Juvonen ◽  
Tomi Järvinen ◽  
Outi M. H. Salo-Ahen

2012 ◽  
Vol 9 (4) ◽  
pp. 801-813 ◽  
Author(s):  
Vinogran Naidoo ◽  
David A. Karanian ◽  
Subramanian K. Vadivel ◽  
Johnathan R. Locklear ◽  
JodiAnne T. Wood ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Mark B. Wiley ◽  
Pedro A. Perez ◽  
Donovan A. Argueta ◽  
Bryant Avalos ◽  
Courtney P. Wood ◽  
...  

The endocannabinoid system is expressed in cells throughout the body and controls a variety of physiological and pathophysiological functions. We describe robust and reproducible UPLC-MS/MS-based methods for analyzing metabolism of the endocannabinoids, 2-arachidonoyl-sn-glycerol and arachidonoyl ethanolamide, and related monoacylglycerols (MAGs) and fatty acid ethanolamides (FAEs), respectively, in mouse mucosal tissues (i.e., intestine and lung). These methods are optimized for analysis of activity of the MAG biosynthetic enzyme, diacylglycerol lipase (DGL), and MAG degradative enzymes, monoacylglycerol lipase (MGL) and alpha/beta hydrolase domain containing-6 (ABHD6). Moreover, we describe a novel UPLC-MS/MS-based method for analyzing activity of the FAE degradative enzyme, fatty acid amide hydrolase (FAAH), that does not require use of radioactive substrates. In addition, we describe in vivo pharmacological methods to inhibit MAG biosynthesis selectively in the mouse small-intestinal epithelium. These methods will be useful for profiling endocannabinoid metabolism in rodent mucosal tissues in health and disease.


2021 ◽  
Author(s):  
Alex Mabou Tagne

The endocannabinoid system (ECS) modulates a variety of physiological processes, attracting considerable attention as a potential target for therapeutic intervention. This complex system is activated by the lipid-derived mediators anandamide and 2-arachidonoyl-sn-glycerol (2-AG), which mainly engage the cannabinoid receptor subtypes 1 (CB1) and 2 (CB2). The biological actions of anandamide and 2-AG are terminated by internalization and intracellular enzymatic hydrolysis catalyzed primarily by the serine hydrolases fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL), respectively. Here, we provide an overview of ECS and discuss the implications for advancing pharmacological tools that interfere with such a system as next-generation therapeutics. This review contains 4 figures, 3 tables and 41 references Keywords: Endocannabinoid; anandamide; 2-Arachidonoyl-sn-glycerol; fatty acid amide hydrolase; monoacylglycerol lipase; cannabinoid receptors; N-acylethanolamine acid amidase; Δ9-tetrahydrocannabinol.


2021 ◽  
Vol 28 ◽  
Author(s):  
Francesca Seghetti ◽  
Silvia Gobbi ◽  
Federica Belluti ◽  
Angela Rampa ◽  
Alessandra Bisi

: Pharmacological treatment of complex pathologies such as neurodegenerative diseases still represents a major challenge, due to the networked pathways involved in their onset and progression that may require equally complex therapeutic approaches. Polypharmacology, based on the simultaneous modulation of multiple targets involved in the disease, may offer the potential to increase effectiveness and reduce the drawbacks related to the use of drug combinations. Clearly, this approach requires both the knowledge of the systems responsible for disease development and the discovery of new attractive targets to be exploited to design a multitarget drug. Over the last years, an ever increasing interest has focused on the endocannabinoid system, implicated in the modulation of several physiological functions, among which neuroinflammation, a crucial process for most neurodegenerative diseases. In this respect, the cannabinoid receptor subtype 2 represents a promising therapeutic target, being overexpressed in microglia cells and thus involved in neuroinflammation. The indirect modulation of this system through the inhibition of the main enzymes responsible for endocannabinoids metabolism, namely fatty acid amide hydrolase and monoacylglycerol lipase, may also significantly affect neurodegenerative processes. The aim of this review is to give an overview of the opportunities posed by the endocannabinoid system for neurodegenerative diseases management, mainly focusing on the potential for a multitarget strategy.


ChemMedChem ◽  
2010 ◽  
Vol 5 (3) ◽  
pp. 357-360 ◽  
Author(s):  
Sonia Gattinoni ◽  
Chiara De Simone ◽  
Sabrina Dallavalle ◽  
Filomena Fezza ◽  
Raffaella Nannei ◽  
...  

Endocrinology ◽  
2003 ◽  
Vol 144 (1) ◽  
pp. 20-28 ◽  
Author(s):  
Mauro Maccarrone ◽  
Sandra Cecconi ◽  
Gianna Rossi ◽  
Natalia Battista ◽  
Riccardo Pauselli ◽  
...  

Abstract Anandamide (AEA), a prominent member of the endogenous ligands of cannabinoid receptors (endocannabinoids), is known to adversely affect female fertility. However, a potential role of AEA in male reproductive functions is unknown. Here we report evidence that immature mouse Sertoli cells have the biochemical tools to bind and inactivate AEA, i.e. a functional type-2 cannabinoid receptor (CB2R), a selective AEA membrane transporter, and an AEA-degrading enzyme fatty acid amide hydrolase. We show that, unlike CB2R, the activity of AEA membrane transporter and the activity and expression of FAAH decrease, whereas the apoptosis-inducing activity of AEA increases with age during the neonatal period. We also show that FSH reduces the apoptotic potential of AEA, but not that of its nonhydrolyzable analog methanandamide. Concomitantly, FSH enhances FAAH activity in a manner dependent on mRNA transcription and protein synthesis and apparently involving cAMP. These data demonstrate that Sertoli cells partake in the peripheral endocannabinoid system, and that FSH reduces the apoptotic potential of AEA by activating FAAH. Taken together, it can be suggested that the endocannabinoid network plays a role in the hormonal regulation of male fertility.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3296
Author(s):  
Ziad Omran

Monoacylglycerol lipase (MAGL) is a key enzyme in the human endocannabinoid system. It is also the main enzyme responsible for the conversion of 2-arachidonoyl glycerol (2-AG) to arachidonic acid (AA), a precursor of prostaglandin synthesis. The inhibition of MAGL activity would be beneficial for the treatment of a wide range of diseases, such as inflammation, neurodegeneration, metabolic disorders and cancer. Here, the author reports the pharmacological evaluation of new disulfiram derivatives as potent inhibitors of MAGL. These analogues displayed high inhibition selectivity over fatty acid amide hydrolase (FAAH), another endocannabinoid-hydrolyzing enzyme. In particular, compound 2i inhibited MAGL in the low micromolar range. However, it did not show any inhibitory activity against FAAH.


Sign in / Sign up

Export Citation Format

Share Document