Effects of daily melatonin injections on activity rhythms of rats in constant light

1987 ◽  
Vol 253 (1) ◽  
pp. R101-R107 ◽  
Author(s):  
M. J. Chesworth ◽  
V. M. Cassone ◽  
S. M. Armstrong

Although from pinealectomy studies the pineal body does not appear to participate in the generation of circadian rhythms of mammals, daily injections of the pineal hormone melatonin entrain free-running locomotor activity rhythms of rats in constant darkness. The aim of the present study was to determine whether rats whose circadian activity and drinking rhythms were disrupted in constant light (LL) could be synchronized by daily melatonin administration. Rats were subjected to a regime of gradually increasing photoperiod until they were maintained in LL. Rats whose rhythms became disrupted or showed intact free-running rhythms were injected daily with either melatonin (1 mg/kg) or vehicle (ethanol-saline) solution. Daily melatonin injections either synchronized or partly synchronized disrupted circadian patterns of activity. In contrast to previous findings from experiments conducted in constant darkness, melatonin did not entrain but only partly synchronized intact free-running rhythms. Results are interpreted in terms of melatonin acting on the coupling or phase relationships between oscillators generating circadian locomotor activity rhythms.

1996 ◽  
Vol 19 (1) ◽  
pp. 11
Author(s):  
A.J.P. Francis ◽  
G.J. Coleman

Circadian rhythms are generated endogenously by biological clocks or 'pacemakers', which are responsive to significant environmental stimuli termed zeitgebers. Interactions between pacemakers and zeitgebers provide the basis for synchronisation by light-dark (LD) cycles, and the characteristics of each of these elements determines the phase-relations maintained between an animal's circadian activity rhythms and the natural temporal environment. We report here the basic photic response parameters for an Australian native rodent, Notomys alexis. Under controlled conditions of constant darkness or constant light, N. alexis were found to 'free-run', and with periods different from 24 hours. Under LD cycles N. alexis were strictly nocturnal although, compared to other rodents, entrainment to LD cycles was relatively unstable. This may indicate that N. alexis are not strongly dependent on the LD cycle as a zeitgeber.


1997 ◽  
Vol 273 (2) ◽  
pp. R797-R804 ◽  
Author(s):  
N. Goel ◽  
T. M. Lee

Two experiments assessed the effects of social cues and daily disturbance on the circadian locomotor activity rhythms of Octodon degus housed in constant darkness. In experiment 1, females in free-running conditions were housed alone or with entrained female partners ("donors") in cages on either side of a mesh barrier. Donors were removed daily and entrained to 1 h of light, and as a control, the cages of singly housed animals were rustled daily coincident with donor removal and replacement. None of the animals housed alone entrained to daily disturbances presented during the active phase, and seven of eight degus failed to show changes in the circadian period (tau) or phase of their rhythms. In contrast, although the presence of entrained donors did not elicit full entrainment of free-running rhythms, five of six animals demonstrated partial entrainment for 5-12 days (of 30 days), four of six altered phase of activity onset, and six of six lengthened tau of circadian rhythms. In experiment 2, females whose free-running circadian activity rhythms were at least 10 h out of phase were housed together in pairs. None of the pairs demonstrated mutual synchronization of their activity rhythms, although 8 of 12 degus modified phase of activity onset and 9 of 12 animals altered tau. We conclude social information in the absence of light, is sufficient for partial entrainment and for changes in tau and phase of free-running rhythms in this diurnal rodent.


Author(s):  
P. Abelló ◽  
D. G. Reid ◽  
E. Naylor

The free-running locomotor activity rhythms of freshly-captured swimming crabs Liocarcinus holsatus and L. depurator have been studied in constant conditions in the laboratory. L. holsatus captured in the intertidal zone of sandy beaches showed strong circatidal activity rhythms with maximum activity at high tide. L. holsatus captured in the sublittoral zone had a clear tendency to show circadian activity rhythms with highest activity during day-time hours. L. depurator occurred only sublittorally and showed circadian activity patterns with highest activity during the night. Exposure to hydrostatic pressure cycles of tidal amplitude and periodicity, entrained strong circatidal activity rhythms in previously arhythmic L. holsatus. This activity pattern also showed a marked circadian component. Exposure to the same regime entrained a circadian rhythm, but not a circatidal rhythm in L. depurator. In the sublittoral zone L. depurator is active mainly during the night, whereas L. holsatus, is active mainly during the day. This may constitute a behavioural mechanism for minimizing competitive interactions between these two sympatric crabs.


1980 ◽  
Vol 58 (8) ◽  
pp. 1399-1403 ◽  
Author(s):  
Martin Kavaliers

Individual and shoaling white suckers, Catostomus commersoni, displayed free running circadian rhythms of locomotor activity under conditions of constant darkness and temperature. The circadian activity of shoals was different from that of single fish. The activity of single fish was rhythmic initially with a period of less than 24 h, but became arrhythmic after 15–30 days. Shoals of white suckers had a less variable circadian period that was greater than 24 h, and showed no evidence of arrhythmicity. The circadian activity of shoals is determined by its behavioural and social organization; it is not simply a more precise version of the activity of single fish.


1977 ◽  
Vol 66 (1) ◽  
pp. 47-64
Author(s):  
P. G. Sokolove ◽  
C. M. Beiswanger ◽  
D. J. Prior ◽  
A. Gelperin

The locomotor activity of the garden slug Limax maximus was examined for components of circadian rhythmicity. Behavioural (running wheel) studies clearly demonstrated that the activity satisfies the principal criteria of circadian rhythmicity. In constant darkness at a constant temperature, the locomotor activity freeran with a period of about 24 h (range 23-6-24-6 h). The rhythm was also expressed in constant light with a period for individual slugs that tended to be shorter in LL than in DD. The period of the rhythm was temperature compensated (11–5-21-5 degrees C) with a Q10 approximately equal to 1–00. The locomotor rhythm could be entrained to 24 h LD cycles such that the circadian activity peak occurred during the dark. The phase angle between the onset of activity and lights-off was not fixed, but was a function of the photoperiod of the entraining light cycle.


1987 ◽  
Vol 4 (2) ◽  
pp. 183-187 ◽  
Author(s):  
Alan M. Rosenwasser ◽  
Susanne J. Hollander ◽  
Norman T. Adler

1997 ◽  
Vol 273 (6) ◽  
pp. R1855-R1860 ◽  
Author(s):  
Susan Benloucif ◽  
Monica I. Masana ◽  
Margarita L. Dubocovich

This study determined the effect of age on the efficacy of melatonin treatment to phase shift circadian activity rhythms and on melatonin receptor expression in the suprachiasmatic nucleus (SCN) and paraventricular nucleus of the thalamus (PVNT) of C3H/HeN mice. The circadian rhythm of 2-[125I]iodomelatonin binding, assessed at three times of the day [circadian times (CT) 2, 10, and 18], showed a modest age-related decrease in the SCN but not the PVNT of old C3H/HeN mice (24 mo). There was a tendency for age to reduce Mel1a melatonin receptor mRNA expression in the suprachiasmatic nucleus during the day, but not during the night. The magnitude of phase shifts of circadian activity rhythms (advances or delays) induced by administration of melatonin at CT 10 or CT 2 was identical in young and old C3H/HeN mice. Together, these results suggest that the decrease in melatonin receptor expression in the SCN had little effect on melatonin-induced phase shifts of circadian activity rhythms. We conclude that the responsiveness of the circadian timing system to melatonin administration does not decrease with age.


2021 ◽  
Author(s):  
Helen Wong ◽  
Jordan M. Buck ◽  
Curtis Borski ◽  
Jessica Pafford ◽  
Bailey N. Keller ◽  
...  

Abstract Background: Regulator of calcineurin 1 (RCAN1) is overexpressed in Down syndrome (DS), but RCAN1 levels are also increased in Alzheimer's disease (AD) and normal aging. AD is highly comorbid among individuals with DS and is characterized in part by progressive neurodegeneration that resembles accelerated aging. Importantly, abnormal RCAN1 levels have been demonstrated to promote memory deficits and pathophysiology symptomatic of DS, AD, and aging. Anomalous diurnal rest-activity patterns and circadian rhythm disruptions are also common in DS, AD, and aging and have been implicated in facilitating age-related cognitive decline and AD progression. However, no prior studies have assessed whether RCAN1 dysregulation may also promote the age-associated alteration of rest-activity profiles and circadian rhythms, which could in turn contribute to neurodegeneration in DS, AD, and aging. Methods: The present study examined the impacts of RCAN1 deficiency and overexpression on the photic entrainment, circadian periodicity, intensity and distribution, diurnal patterning, and circadian rhythmicity of wheel running in young (3-6 months old) and aged (9-14 months old) mice. All data were initially analyzed by multifactorial ANOVA with variables of genotype, age, treatment, and sex considered as dependent variables.Results: We found that daily RCAN1 levels in the hippocampi of light-entrained young mice are generally constant and that balanced RCAN1 expression is necessary for normal circadian locomotor activity rhythms. While the light-entrained diurnal period was unaltered, RCAN1-null and -overexpressing mice displayed lengthened endogenous (free-running) circadian periods like mouse models of AD and aging. In light-entrained young mice, RCAN1 knockout and overexpression also recapitulated the general hypoactivity, diurnal rest-wake pattern fragmentation, and attenuated amplitudes of circadian activity rhythms reported in DS, preclinical and clinical AD, healthily aging individuals, and rodent models thereof. Under constant darkness, RCAN1-null and -overexpressing mice displayed altered locomotor behavior indicating circadian clock dysfunction. Using the Dp(16)1Yey/+ (Dp16) mouse model for DS, which expresses three copies of Rcan1, we found reduced wheel running activity and rhythmicity in both light-entrained and free-running young Dp16 mice like young RCAN1-overexpressing mice. Critically, these diurnal and circadian deficits were rescued in part or entirely by restoring Rcan1 to two copies in Dp16 mice. Conclusions: Collectively, this study's findings suggest that both loss and aberrant gain of RCAN1 precipitate anomalous light-entrained diurnal and circadian activity patterns emblematic of DS, AD, and aging.


Sign in / Sign up

Export Citation Format

Share Document