Subfornical organ and cardiovascular influences on identified septal neurons

1988 ◽  
Vol 254 (3) ◽  
pp. R544-R551 ◽  
Author(s):  
S. D. Donevan ◽  
A. V. Ferguson

We have identified, in urethan-anesthetized male Sprague-Dawley rats, a polysynaptic pathway connecting the subfornical organ (SFO) with the paraventricular nucleus (PVN) with a relay neuron in the medial septum-diagonal band of Broca (MS-DBB). Extracellular recordings were obtained from 136 MS-DBB neurons antidromically identified as projecting to the PVN. SFO stimulation orthodromically activated 79% of these cells (mean latency, 21.2 +/- 0.6 ms; mean duration, 6.0 +/- 0.2 ms), whereas stimulation in the fornix or hippocampal commissure had no effect. Of 35 identified MS-DBB neurons tested with systemic angiotensin II (ANG II), eight showed increases and six decreases in excitability that coincided with the ANG II-induced increase in blood pressure. To determine whether such changes were blood pressure related, 23 of the 35 identified MS-DBB neurons tested with ANG II were tested with systemic epinephrine. In every case the effect of epinephrine was similar to that of ANG II. These findings suggest that neurons in the MS-DBB receive afferent information from the SFO and the cardiovascular system. These cells in turn may activate neurons involved in the control of a variety of autonomic functions.

1985 ◽  
Vol 249 (2) ◽  
pp. R214-R218 ◽  
Author(s):  
A. V. Ferguson ◽  
C. W. Bourque ◽  
L. P. Renaud

Extracellular single unit recordings obtained in pentobarbital-anesthetized male Sprague Dawley rats were utilized to examine the electrophysiology of connections of medial septum-diagonal band of Broca (MS-DBB) neurons with the subfornical organ (SFO), hippocampal commissure (HC), and supraoptic nucleus (SON). Of the 119/216 cells tested that demonstrated antidromic activation from SON, many (60%) were orthodromically excited by SFO stimulation, whereas most (68%) were unresponsive to stimulation in the adjacent HC. Separate populations of MS-DBB neurons that displayed antidromic activation from the SFO (11/140 cells tested) or HC (24/78 tested) were orthodromically excited by SON stimulation. Three cells were activated antidromically from both the SFO and SON. These observations reveal some possible interconnections between these three brain regions and point to the existence of an indirect pathway whereby the SFO can influence SON neurons through an influence on MS-DBB neurons.


2007 ◽  
Vol 292 (2) ◽  
pp. F861-F867 ◽  
Author(s):  
Melvin R. Hayden ◽  
Nazif A. Chowdhury ◽  
Shawna A. Cooper ◽  
Adam Whaley-Connell ◽  
Javad Habibi ◽  
...  

TG(mRen2)27 (Ren2) transgenic rats overexpress the mouse renin gene, with subsequent elevated tissue ANG II, hypertension, and nephropathy. The proximal tubule cell (PTC) is responsible for the reabsorption of 5–8 g of glomerular filtered albumin each day. Excess filtered albumin may contribute to PTC damage and tubulointerstitial disease. This investigation examined the role of ANG II-induced oxidative stress in PTC structural remodeling: whether such changes could be modified with in vivo treatment with ANG type 1 receptor (AT1R) blockade (valsartan) or SOD/catalase mimetic (tempol). Male Ren2 (6–7 wk old) and age-matched Sprague-Dawley rats were treated with valsartan (30 mg/kg), tempol (1 mmol/l), or placebo for 3 wk. Systolic blood pressure, albuminuria, N-acetyl-β-d-glucosaminidase, and kidney tissue malondialdehyde (MDA) were measured, and ×60,000 transmission electron microscopy images were used to assess PTC microvilli structure. There were significant differences in systolic blood pressure, albuminuria, lipid peroxidation (MDA and nitrotyrosine staining), and PTC structure in Ren2 vs. Sprague-Dawley rats (each P < 0.05). Increased mean diameter of PTC microvilli in the placebo-treated Ren2 rats ( P < 0.05) correlated strongly with albuminuria ( r2 = 0.83) and moderately with MDA ( r2 = 0.49), and there was an increase in the ratio of abnormal forms of microvilli in placebo-treated Ren2 rats compared with Sprague-Dawley control rats ( P < 0.05). AT1R blockade, but not tempol treatment, abrogated albuminuria and N-acetyl-β-d-glucosaminidase; both therapies corrected abnormalities in oxidative stress and PTC microvilli remodeling. These data indicate that PTC structural damage in the Ren2 rat is related to the oxidative stress response to ANG II and/or albuminuria.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Luciana C Veiras ◽  
Jiyang Han ◽  
Donna L Ralph ◽  
Alicia A McDonough

During Ang II hypertension distal tubule Na-Cl Cotransporter (NCC) abundance and its activating phosphorylation (NCCp), as well as Epithelial Na+ channels (ENaC) abundance and activating cleavage are increased 1.5-3 fold. Fasting plasma [K+] is significantly lower in Ang II hypertension (3.3 ± 0.1 mM) versus controls (4.0 ± 0.1 mM), likely secondary to ENaC stimulation driving K+ secretion. The aim of this study was to test the hypothesis that doubling dietary K+ intake during Ang II infusion will lower NCC and NCCp abundance to increase Na+ delivery to ENaC to drive K+ excretion and reduce blood pressure. Methods: Male Sprague Dawley rats (225-250 g; n= 7-9/group) were treated over 2 weeks: 1) Control 1% K diet fed (C1K); 2) Ang II infused (400 ng/kg/min) 1% K diet fed (A1K); or 3) Ang II infused 2% K diet fed (A2K). Blood pressure (BP) was determined by tail cuff, electrolytes by flame photometry and transporters’ abundance by immunoblot of cortical homogenates. Results: As previously reported, Ang II infusion increased systolic BP (from 132 ± 5 to 197 ± 4 mmHg), urine volume (UV, 2.4 fold), urine Na+ (UNaV, 1.3 fold), heart /body weight ratio (1.23 fold) and clearance of endogenous Li+ (CLi, measures fluid volume leaving the proximal tubule, from 0.26 ± 0.02 to 0.51 ± 0.01 ml/min/kg) all evidence for pressure natriuresis. A2K rats exhibited normal plasma [K+] (4.6 ± 0.1 mM, unfasted), doubled urine K+ (UKV, from 0.20 to 0.44 mmol/hr), and increased CLi (to 0.8 ± 0.1 ml/min/kg) but UV, UNaV, cardiac hypertrophy and BP were unchanged versus the A1K group. As expected, NCC, NCCpS71 and NCCpT53 abundance increased in the A1K group to 1.5 ± 0.1, 2.9 ± 0.5 and 2.8 ± 0.4 fold versus C1K, respectively. As predicted by our hypothesis, when dietary K+ was doubled (A2K), Ang II infusion did not activate NCC, NCCpS71 nor NCCpT53 (0.91 ± 0.04, 1.3 ± 0.1 and 1.6 ± 0.2 fold versus C1K, respectively). ENaC subunit abundance and cleavage increased 1.5 to 3 fold in both A1K and A2K groups; ROMK was unaffected by Ang II or dietary K. In conclusion, evidence is presented that stimulation of NCC during Ang II hypertension is secondary to K+ deficiency driven by ENaC stimulation since doubling dietary K+ prevents the activation. The results also indicate that elevation in BP is independent of NCC activation


2016 ◽  
Vol 310 (2) ◽  
pp. R115-R124 ◽  
Author(s):  
Kathryn R. Walsh ◽  
Jill T. Kuwabara ◽  
Joon W. Shim ◽  
Richard D. Wainford

Recent studies have implicated a role of norepinephrine (NE) in the activation of the sodium chloride cotransporter (NCC) to drive the development of salt-sensitive hypertension. However, the interaction between NE and increased salt intake on blood pressure remains to be fully elucidated. This study examined the impact of a continuous NE infusion on sodium homeostasis and blood pressure in conscious Sprague-Dawley rats challenged with a normal (NS; 0.6% NaCl) or high-salt (HS; 8% NaCl) diet for 14 days. Naïve and saline-infused Sprague-Dawley rats remained normotensive when placed on HS and exhibited dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide. NE infusion resulted in the development of hypertension, which was exacerbated by HS, demonstrating the development of the salt sensitivity of blood pressure [MAP (mmHg) NE+NS: 151 ± 3 vs. NE+HS: 172 ± 4; P < 0.05]. In these salt-sensitive animals, increased NE prevented dietary sodium-evoked suppression of peak natriuresis to hydrochlorothiazide, suggesting impaired NCC activity contributes to the development of salt sensitivity [peak natriuresis to hydrochlorothiazide (μeq/min) Naïve+NS: 9.4 ± 0.2 vs. Naïve+HS: 7 ± 0.1; P < 0.05; NE+NS: 11.1 ± 1.1; NE+HS: 10.8 ± 0.4). NE infusion did not alter NCC expression in animals maintained on NS; however, dietary sodium-evoked suppression of NCC expression was prevented in animals challenged with NE. Chronic NCC antagonism abolished the salt-sensitive component of NE-mediated hypertension, while chronic ANG II type 1 receptor antagonism significantly attenuated NE-evoked hypertension without restoring NCC function. These data demonstrate that increased levels of NE prevent dietary sodium-evoked suppression of the NCC, via an ANG II-independent mechanism, to stimulate the development of salt-sensitive hypertension.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 298-298
Author(s):  
Jasmynne Blacks ◽  
Ferdinand Althammer ◽  
Rami Najjar ◽  
Maureen Meister ◽  
Jessica Dahn ◽  
...  

Abstract Objectives To examine whether raspberry (RB) attenuates oxidative stress induced by angiotensin (Ang) II in the subfornical organ (SFO) of the brain in rats. Methods Male Sprague-Dawley rats were fed an AIN-93M diet with or without 10% w/w freeze-dried RB powder for seven weeks. At week 4, rats were implanted with subcutaneous osmotic minipumps that delivered 0.9% saline (Control) or Ang II (270 ng/kg body weight/day) for another three weeks. Brain region-specific tissue punches were collected from flash-frozen sections containing the SFO. NADPH oxidase (NOX) 2 and 4 and superoxide dismutase (SOD) 1 and 2 were measured in SFO using western blot. Results were analyzed using one-way ANOVA followed by Tukey post hoc test. Data were normalized to control and are expressed as means ± standard deviation. Results Ang II significantly increased NOX2 expression compared to control (1.24 ± 0.1, n = 5, vs 1.00 ± 0.07-fold, n = 3, P = 0.009) while RB supplementation significantly attenuated Ang II-induced increases in NOX2 (0.91 ± 0.05-fold, n = 4; P = 0.0006). Ang II also increased NOX4 expression compared to control (2.11 ± 1.2, n = 9, vs 0.98 ± 0.4-fold, n = 6, P = 0.04), but RB supplementation did not significantly attenuate this effect (1.30 ± 0.36-fold, n = 10, P = 0.11). RB increased expression of SOD1 (1.52 ± 0.20-fold, n = 4) compared to control (1.00 ± 0.15-fold, n = 3, P = 0.009) and Ang II alone (1.08 ± 0.16-fold, n = 5, P = 0.01). On the other hand, Ang II treatment decreased SOD2 expression compared to control (0.62 ± 0.05, n = 5, vs 1.00 ± 0.09-fold, n = 3, P = 0.0001), but the RB supplementation did not prevent this effect (0.72 ± 0.07-fold, n = 4, P = 0.16). Conclusions Our findings suggest that RB supplementation decreases Ang II-induced oxidative stress in the SFO by decreasing NOX2 and increasing SOD1 expression. Future investigations are warranted to elucidate the effects of RB on oxidative stress pathways in the SFO. Funding Sources This work was supported by the Agriculture and Food Research Initiative (grant no. 2019–67,017-29,257/project accession no. 1,018,642) from the USDA National Institute of Food and Agriculture.


2003 ◽  
Vol 105 (2) ◽  
pp. 235-242 ◽  
Author(s):  
Rhian M. TOUYZ ◽  
Guoying YAO

In the present in vivo study, we have investigated whether inhibitors of the Na+/Mg2+ exchanger quinidine and imipramine influence the development of hypertension and whether this is associated with modulation of mitogen-activated protein (MAP) kinase activation in arteries and kidneys of hypertensive rats. Sprague—Dawley rats were divided into four groups (n=6/group): control (vehicle), angiotensin II (Ang II; 150 ng/kg of body weight per min subcutaneously), quinidine [Ang II (150 ng/kg of body weight per min)+quinidine (5 mg/kg of body weight per day in food)] and imipramine groups [Ang II (150 ng/kg of body weight per min)+imipramine (5 mg/kg/day in food)]. Rats were studied for 3 weeks. Phosphorylation of vascular and renal extracellular-signal-regulated protein kinase 1/2 (ERK1/2), p38MAP kinase and c-Jun N-terminal kinase (JNK) were assessed using phospho-specific antibodies. Ang II increased systolic blood pressure from 112±5 mmHg to 215±9 mmHg (P<0.01). Development of hypertension was attenuated in Ang II-infused rats treated with quinidine (173±6 mmHg) and imipramine (152±6 mmHg) (P<0.01). Phosphorylation of ERK1/2, p38MAP kinase and JNK, which were increased 2–3-fold in arteries of the Ang II group, were reduced by quinidine and imipramine (P<0.05). Activation of renal MAP kinases was also increased in the Ang II group (P<0.05). Quinidine and imipramine reduced the phosphorylation of renal ERK1/2, but did not modify renal p38MAP kinase or JNK. Our data demonstrate that Ang II induces severe hypertension in Sprague—Dawley rats and this is associated with increased phosphorylation of vascular and renal MAP kinases. Quinidine and imipramine attenuated the development of hypertension and normalized MAP kinase activity. The findings from this study suggest a possible role for the Na+/Mg2+ exchanger in vascular signalling events associated with blood pressure elevation in Ang II-dependent hypertension.


2019 ◽  
Vol 316 (2) ◽  
pp. R172-R185 ◽  
Author(s):  
Noreen F. Rossi ◽  
Zachary Zenner ◽  
Arun K. Rishi ◽  
Edi Levi ◽  
Maria Maliszewska-Scislo

The subfornical organ (SFO), a forebrain circumventricular organ that lies outside the blood-brain barrier, has been implicated in arterial pressure and baroreflex responses to angiotensin II (ANG II). We tested whether pharmacological inhibition or selective silencing of SFO ANG II type 1 receptors (AT1R) of two-kidney, one-clip rats with elevated plasma ANG II decreases resting arterial pressure and renal sympathetic nerve activity (RSNA) and/or modulates arterial baroreflex responses of heart rate (HR) and RSNA. Male Sprague-Dawley rats underwent renal artery clipping [2-kidney, 1-clip (2K,1C)] or sham clipping (sham). After 6 wk, conscious rats instrumented with vascular catheters, renal nerve electrodes, and a cannula directed to the SFO were studied. In another set of experiments, rats were instrumented with hemodynamic and nerve radio transmitters and injected with scrambled RNA or silencing RNA targeted against AT1R. Mean arterial pressure (MAP) was significantly higher in 2K,1C rats. Acute SFO injection with the AT1R inhibitor losartan did not change MAP in sham or 2K,1C rats. Baroreflex curves of HR and RSNA were shifted rightward in 2K,1C rats. Losartan exerted no effect. SFO AT1R knockdown did not influence MAP in sham rats but decreased MAP in 2K,1C rats, despite no change in plasma ANG II or resting RSNA. AT1R knockdown prevented the reduction in maximum gain and slope of baroreflex responses of HR and RSNA; the reduced RSNA response to baroreceptor unloading was partially restored in 2K,1C rats. These findings show that AT1R activation within the SFO contributes to hypertension and baroreflex dysfunction in 2K,1C rats and highlight the temporal requirement for reversal of these effects.


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 685-685
Author(s):  
Clara M Ortiz-Ruiz ◽  
Elizabeth Sanabria ◽  
Melissa C Manriquez ◽  
Rodney J Bolterman ◽  
Luis A Juncos ◽  
...  

44 Chronic infusion of subpressor doses of Ang II causes blood pressure to increase progressively over several days. The mechanisms underlying this response are unknown but may involve Ang II-induced generation of additional vasoconstrictor processes. In this study, we tested whether endothelin and/or oxidative stress are implicated in the slow pressor responses to Ang II. We infused either vehicle (group 1; n=6) or Ang II (group 2; n=5) intravenously at 5 ng/kg/min via osmotic pumps for 15 days into Sprague Dawley rats. In addition to the Ang II infusion, groups 3 and 4 (n=6 each) received 30 mg/kg/day of either losartan (an angiotensin AT 1 receptor blocker) or bosentan (a blocker of both endothelin receptors, ET A and ET B ) in their drinking water. We measured systolic blood pressure (SBP) during the infusion, and the levels of circulating Ang II and isoprostanes (a marker of oxidative stress) at the conclusion of the experiments. Rats infused with vehicle had no change in SBP (from 138±13 to 138±2 mmHg) and normal levels of Ang II (34.5±9 pg/ml) and isoprostanes (111±10 pg/ml). Ang II infusion increased SBP from 133±10 to 158±8 mmHg, as well as circulating levels of Ang II (144±65 pg/ml) and isoprostanes (156±19 pg/ml). Losartan treatment abolished Ang II induced increases in SBP (SBP went from 137±5 to 120±4 mmHg), and isoprostanes (115±15 pg/ml), without altering Ang II levels (101±30 pg/ml). Bosentan also blocked Ang II-induced increases in SBP (from 135±4 to 139±3) but did not alter the increased isoprostane levels (146±14 pg/ml). Surprisingly, bosentan blunted the increase in Ang II levels (51±10 pg/ml). In conclusion, low dose Ang II-induced increases in SBP and oxidant stress depend on the AT 1 receptor. Endothelin receptor blockade also reduces SBP, but it does so independently of reducing oxidative stress (as measured by isoprostanes).


2005 ◽  
Vol 288 (2) ◽  
pp. H680-H685 ◽  
Author(s):  
Michael D. Hendel ◽  
John P. Collister

Previous studies clearly demonstrated acute actions of angiotensin II (ANG II) at one of the central circumventricular organs, the subfornical organ (SFO), but studies demonstrating a role for the SFO in the chronic actions of ANG II remain uncertain. The purpose of this study was to examine the role of the SFO in the chronic hypertensive phase of ANG II-induced hypertension. We hypothesized that the SFO is necessary for the full hypertensive response observed during the chronic phase of ANG II-induced hypertension. To test this hypothesis, male Sprague-Dawley rats were subjected to sham operation (sham rats) or electrolytic lesion of the SFO (SFOx rats). After 1 wk, the rats were instrumented with venous catheters and radiotelemetric transducers for intravenous administration of ANG II and measurement of blood pressure and heart rate, respectively. Rats were then allowed 1 wk for recovery. After 3 days of saline control infusion (7 ml of 0.9% NaCl/day), sham and SFOx rats were infused with ANG II at 10 ng·kg−1·min−1 iv for 10 consecutive days and then allowed to recover for 3 days. A 0.4% NaCl diet and distilled water were provided ad libitum. At day 5 of ANG II infusion, mean arterial pressure increased 11.7 ± 3.0 mmHg in sham rats ( n = 9) but increased only 3.7 ± 1.4 mmHg in SFOx rats ( n = 9). This trend continued through day 10 of ANG II treatment. These results support the hypothesis that the SFO is necessary for the full hypertensive response to chronic ANG II administration.


2010 ◽  
Vol 299 (5) ◽  
pp. R1202-R1211 ◽  
Author(s):  
Carrie A. Northcott ◽  
Stephanie Watts ◽  
Yanfang Chen ◽  
Mariana Morris ◽  
Alex Chen ◽  
...  

Brain and peripheral renin-angiotensin systems are important in blood pressure maintenance. Circulating ANG II stimulates brain RAS to contribute to the increase mean arterial pressure (MAP). This mechanism has not been fully clarified, so it was hypothesized that reducing angiotensin type 1a (AT1a) receptors (AT1aRs) in the paraventricular nucleus (PVN) would diminish intravenous ANG II-induced increases in MAP. Adenoviruses (Ad) encoding AT1a small hairpin RNA (shRNA) or Ad-LacZ (marker gene) were injected into the PVN [1 × 109 plaque-forming units/ml, bilateral (200 nl/site)] of male Sprague-Dawley rats instrumented with radiotelemetry transmitters for MAP and heart rate measurements and with venous catheters for drug administration. No differences in weight gain or basal MAP were observed. ANG II (30 ng·kg−1·min−1 iv, 15 μl/min for 60 min) was administered 3, 7, 10, and 14 days after PVN Ad injection to increase blood pressure. ANG II-induced elevations in MAP were significantly reduced in PVN Ad-AT1a shRNA rats compared with Ad-LacZ rats (32 ± 6 vs. 8 ± 9 mmHg at 7 days, 35 ± 6 vs. 10 ± 6 mmHg at 10 days, and 32 ± 2 vs. 1 ± 5 mmHg at 14 days; P < 0.05). These observations were confirmed by acute administration of losartan (20 nmol/l, 100 nl/site) in the PVN prior to short-term infusion of ANG II; the ANG II-pressor response was attenuated by 69%. In contrast, PVN Ad-AT1a shRNA treatment did not influence phenylephrine-induced increases in blood pressure (30 μg·kg−1·min−1 iv, 15 μl/min for 30 min). Importantly, PVN Ad-AT1a shRNA did not alter superior mesenteric arterial contractility to ANG II or norepinephrine; ACh-induced arterial relaxation was also unaltered. β-Galactosidase staining revealed PVN Ad transduction, and Western blot analyses revealed significant reductions of PVN AT1 protein. In conclusion, PVN-localized AT1Rs are critical for short-term circulating ANG II-mediated elevations of blood pressure. A sustained suppression of AT1aR expression by single administration of shRNA can interfere with short-term actions of ANG II.


Sign in / Sign up

Export Citation Format

Share Document