Differential regulation of central vasopressin in transgenic rats harboring the mouse Ren-2 gene

1994 ◽  
Vol 267 (3) ◽  
pp. R786-R791 ◽  
Author(s):  
A. Moriguchi ◽  
C. M. Ferrario ◽  
K. B. Brosnihan ◽  
D. Ganten ◽  
M. Morris

The transgenic (TG) rat carrying the mouse renin gene (mRen-2d) has provided a unique opportunity to explore central interactions between the brain renin-angiotensin (RAS) and vasopressin (AVP) systems. To evaluate the hypothalamic vasopressin axis in the TG rat, we measured the central nervous system concentrations of AVP and determined the effect of angiotensin II (ANG II) and its NH2-terminal heptapeptide [angiotensin-(1-7)] on blood pressure, heart rate, and AVP release using brain microdialysis. Intracerebroventricular infusion of ANG II or ANG-(1-7) in control rats increased local AVP release from the paraventricular and supraoptic nuclei. The ANG II infusion was associated with a significant increase in blood pressure not observed with ANG-(1-7). In contrast, the angiotensin peptide-induced central AVP responses and the ANG II-induced blood pressure increase were absent in the TG animal. The plasma AVP responses to ANG II and ANG-(1-7) were comparable in the control and TG rats. The TG rats exhibited a 22-fold higher level of AVP in the dorsal lower brain stem but had lower AVP levels in the posterior pituitary and the median eminence compared with control rats. These results suggest that insertion of the mouse renin gene into the rat genome leads to alterations in the AVP axis in terms of AVP peptide content and angiotensin-induced cardiovascular and AVP responses.

2018 ◽  
Vol 25 (28) ◽  
pp. 3333-3352 ◽  
Author(s):  
Natalia Pessoa Rocha ◽  
Ana Cristina Simoes e Silva ◽  
Thiago Ruiz Rodrigues Prestes ◽  
Victor Feracin ◽  
Caroline Amaral Machado ◽  
...  

Background: The Renin-Angiotensin System (RAS) is a key regulator of cardiovascular and renal homeostasis, but also plays important roles in mediating physiological functions in the central nervous system (CNS). The effects of the RAS were classically described as mediated by angiotensin (Ang) II via angiotensin type 1 (AT1) receptors. However, another arm of the RAS formed by the angiotensin converting enzyme 2 (ACE2), Ang-(1-7) and the Mas receptor has been a matter of investigation due to its important physiological roles, usually counterbalancing the classical effects exerted by Ang II. Objective: We aim to provide an overview of effects elicited by the RAS, especially Ang-(1-7), in the brain. We also aim to discuss the therapeutic potential for neuropsychiatric disorders for the modulation of RAS. Method: We carried out an extensive literature search in PubMed central. Results: Within the brain, Ang-(1-7) contributes to the regulation of blood pressure by acting at regions that control cardiovascular functions. In contrast with Ang II, Ang-(1-7) improves baroreflex sensitivity and plays an inhibitory role in hypothalamic noradrenergic neurotransmission. Ang-(1-7) not only exerts effects related to blood pressure regulation, but also acts as a neuroprotective component of the RAS, for instance, by reducing cerebral infarct size, inflammation, oxidative stress and neuronal apoptosis. Conclusion: Pre-clinical evidence supports a relevant role for ACE2/Ang-(1-7)/Mas receptor axis in several neuropsychiatric conditions, including stress-related and mood disorders, cerebrovascular ischemic and hemorrhagic lesions and neurodegenerative diseases. However, very few data are available regarding the ACE2/Ang-(1-7)/Mas receptor axis in human CNS.


1987 ◽  
Vol 252 (1) ◽  
pp. R73-R77
Author(s):  
B. A. Breuhaus ◽  
J. E. Chimoskey

Conscious adult female sheep chronically prepared with nonocclusive indwelling vascular and cerebroventricular catheters were used to determine whether centrally administered prostaglandin E2 (PGE2) increases blood pressure by activation of the brain renin angiotensin system or whether centrally administered angiotensin II (ANG II) increases blood pressure by stimulating prostaglandin synthesis in the brain. Intracerebroventricular (ivt) ANG II, 50 ng X kg-1 X min-1, increased arterial pressure 23 mmHg (P less than 0.01) 30 min after the start of infusion. Infusion of the ANG II antagonist [Sar1-Thr8]ANG II (sarthran), 1,000 ng X kg-1 X min-1 ivt, had no effect on arterial pressure when given by itself but reduced the ivt ANG II-induced pressor response to 5 mmHg (P less than 0.05) when the two peptides were infused at the same time. Intracerebroventricular infusion of sarthran did not alter the pressor responses to intracarotid (ic) PGE2 or to ivt PGE2. Blood pressure increased 21 mmHg (P less than 0.01) 30 min after the start of PGE2 infusion when PGE2 was given ic by itself, compared with 17 mmHg (P less than 0.01) when PGE2 was given ic at the same time as sarthran was given ivt. Blood pressure increased 14 mmHg (P less than 0.01) 30 min after the start of PGE2 infusion when PGE2 was given ivt by itself, compared with 16 mmHg (P less than 0.01) when PGE2 was given ivt at the same time as sarthran was given ivt. Pretreatment with the cyclooxygenase inhibitors indomethacin, 4 mg/kg sc, or flunixin meglumine, 3 mg/kg iv, did not alter the ivt ANG II-induced pressor response.(ABSTRACT TRUNCATED AT 250 WORDS)


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Takuto Nakamura ◽  
Masanobu Yamazato ◽  
Akio Ishida ◽  
Yusuke Ohya

Objective: Aminopeptidase A (APA) have important role in conversion of Ang II to Ang III. Intravenous APA administration lowers blood pressure in hypertensive rats. In contrast, APA inhibition in the brain lowers blood pressure in hypertensive rats. Therefore APA might have different role on cardiovascular regulation. However, a role of APA and Ang III on cardiovascular regulation especially in the brain has not been fully understood. Our purpose of present study was to investigate a role of APA and Ang III in the brain on cardiovascular regulation in conscious state. Method: 12-13 weeks old Wistar Kyoto rat (WKY) and 12-16 weeks old spontaneously hypertensive rat (SHR) were used. i) APA distribution in the brain was evaluated by immunohistochemistry. Protein expression of APA was evaluated by Western blotting. Enzymatic activity of APA was evaluated using L-glutamic acid γ-(4-nitroanilide) as a substrate. ii) WKY received icv administration of Ang II 25ng/2μL and Ang III 25ng/2μL. We recorded change in mean arterial pressure (MAP) in conscious and unrestraied state and measured induced drinking time. iii) SHR received icv administeration of recombinant APA 400ng/4μL. We recorded change in MAP in conscious and unrestraied state and measured induced drinking time. Result: i) APA was diffusely immunostained in the cells of brain stem including cardiovascular regulatory area such as rostral ventrolateral medulla. Protein expression and APA activity in the brain were similar between WKY (n=3) and SHR (n=3).ii) Icv administration of Ang II increased MAP by 33.8±3.8 mmHg and induced drinking behavior for 405±90 seconds (n=4). Icv administration of Ang III also increased MAP by 24.7±2.4 mmHg and induced drinking behavior for 258±62 seconds (n=3). These vasopressor activity and induced drinking behavior was completely blocked by pretretment of angiotensin receptor type 1 blocker.iii) Icv administration of APA increased MAP by 10.0±1.7 mmHg (n=3). Conclusion: These results suggested that Ang III in the brain increase blood pressure by Angiotensin type 1 receptor dependent mechanism and APA in the brain may involved in blood pressure regulation as a vasopressor enzyme.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Takuto Nakamura ◽  
Masanobu Yamazato ◽  
Yusuke Ohya

Objective: Aminopeptidase A (APA) degrades of various sympathomodulatory peptides such as angiotensin (Ang) II, cholecystkinin-8, neurokinin B and kallidin. APA activity is increased in the brain of hypertensive rats. A centrally acting APA inhibitor prodrug is currently under investigation in clinical trial for treatment of hypertension. In previous reports, a role of APA in the brain on cardiovascular regulation was researched focus on only renin-angiotensin system. We previously reported that intracerebroventricular(icv) administration of APA increased blood pressure and that this pressor response was partially blocked by angiotensin receptor blocker. In this study, we evaluated a role of APA on cardiovascular regulation focusing on peptides other than Ang II. Method: Eleven weeks old Wistar Kyoto rats were used. We icv administrated 800 ng/8 μL of APA after pretreatment of following drugs, i) 8μL of artificial cerebrospinal fluid (aCSF) as a control, ii) 80 nmol/8 μL of amastatin which is a non-specific aminopeptidase inhibitor, iii) 1 nmol/8 μL of HOE-140 which is a bradykinin receptor blocker to evaluate the involvement of degradation of kallidin to bradykinin by APA. Result: i) Icv administration of APA after pretreatment of aCSF increased blood pressure rapidly. Blood pressure reached a peak within 1 minute. The elevated blood pressure decreased gradually and reached baseline blood pressure in 10 minutes. A peak pressor response is 25.5±1.4 mmHg (n=5). ii) Icv pretreatment of amastatin or HOE-140 did not change the blood pressure. A peak pressor response induced by APA is 13.1±4.1 mmHg (n=6, p<0.05 vs aCSF). iii) Icv pretreatment of HOE-140 did not change the blood pressure. A peak pressor response induced by APA is 21.2±1.8 mmHg (n=4, p<0.05 vs aCSF). Conclusion: 1) Icv administration of APA increased blood pressure by APA enzymatic activity. 2) Cardiovascular regulation of APA in the brain is due to not only degradation of Ang II to Ang III but also degradation of kallidin to bradykinin. Clinical implication: We think inhibition of APA in the brain may be a unique therapeutic target which affects several cardiovascular peptides in the brain.


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 727-727
Author(s):  
Ovidiu Baltatu ◽  
Ben J Janssen ◽  
Ralph Plehm ◽  
Detlev Ganten ◽  
Michael Bader

P191 The brain renin-angiotensin system (RAS) system may play a functional role in the long-term and short-term control of blood pressure (BPV) and heart rate variability (HRV). To study this we recorded in transgenic rats TGR(ASrAOGEN) with low brain angiotensinogen levels the 24-h variation of BP and HR during basal and hypertensive conditions, induced by a low-dose s.c. infusion of angiotensin II (Ang II, 100 ng/kg/min) for 7 days. Cardiovascular parameters were monitored by telemetry. Short-term BPV and HRV were evaluated by spectral analysis and as a measure of baroreflex sensitivity the transfer gain between the pressure and heart rate variations was calculated. During the Ang II infusion, in SD but not TGR(ASrAOGEN) rats, the 24-h rhythm of BP was inverted (5.8 ± 2 vs. -0.4 ± 1.8 mm Hg/group of day-night differences of BP, p< 0.05, respectively). In contrast, in both the SD and TGR(ASrAOGEN) rats, the 24-h HR rhythms remained unaltered and paralleled those of locomotor activity. The increase of systolic BP was significantly reduced in TGR(ASrAOGEN) in comparison to SD rats as previously described, while the HR was not altered in TGR(ASrAOGEN) nor in SD rats. The spectral index of baroreflex sensitivity (FFT gain between 0.3-0.6 Hz) was significantly higher in TGR(ASrAOGEN) than SD rats during control (0.71 ± 0.1 vs. 0.35 ± 0.06, p<0.05), but not during Ang II infusion (0.6 ± 0.07 vs. 0.4 ± 0.1, p>0.05). These results demonstrate that the brain RAS plays an important role in mediating the effects of Ang II on the circadian variation of BP. Furthermore these data are consistent with the view that the brain RAS modulates baroreflex control of HR in rats, with AII having an inhibitory role.


Hypertension ◽  
2020 ◽  
Vol 76 (5) ◽  
pp. 1514-1525
Author(s):  
Anyun Ma ◽  
Lie Gao ◽  
Ahmed M. Wafi ◽  
Li Yu ◽  
Tara Rudebush ◽  
...  

We investigated the mechanism by which ACE2 (angiotensin-converting enzyme 2) overexpression alters neurohumoral outflow and central oxidative stress. Nrf2 (nuclear factor [erythroid-derived 2]-like 2) is a master antioxidant transcription factor that regulates cytoprotective and antioxidant genes. We hypothesized that upregulation of central ACE2 inhibits the pressor response to Ang II (angiotensin II) by reducing reactive oxygen species through a Nrf2/antioxidant enzyme–mediated mechanism in the rostral ventrolateral medulla. Synapsin human Angiotensin Converting Enzyme 2 positive (SynhACE2 +/+ ) mice and their littermate controls synhACE2 −/− were used to evaluate the consequence of intracerebroventricular infusion of Ang II. In control mice, Ang II infusion evoked a significant increase in blood pressure and norepinephrine excretion, along with polydipsia and polyuria. The pressor effect of central Ang II was completely blocked in synhACE2 +/+ mice. Polydipsia, norepinephrine excretion, and markers of oxidative stress in response to central Ang II were also reduced in synhACE2 +/+ mice. The MasR (Mas receptor) agonist Ang 1–7 and blocker A779 had no effects on blood pressure. synhACE2 +/+ mice showed enhanced expression of Nrf2 in the rostral ventrolateral medulla which was blunted following Ang II infusion. Ang II evoked nuclear translocation of Nrf2 in cultured Neuro 2A (N2A) cells. In synhACE2 −/− mice, the central Ang II pressor response was attenuated by simultaneous intracerebroventricular infusion of the Nrf2 activator sulforaphane; blood pressure was enhanced by knockdown of Nrf2 in the rostral ventrolateral medulla in Nrf2 floxed (Nrf2 f/f ) mice. These data suggest that the hypertensive effects of intracerebroventricular Ang II are attenuated by selective overexpression of brain synhACE2 and may be mediated by Nrf2-upregulated antioxidant enzymes in the rostral ventrolateral medulla.


1998 ◽  
Vol 275 (2) ◽  
pp. R410-R417 ◽  
Author(s):  
Atsushi Sakima ◽  
Hiroshi Teruya ◽  
Masanobu Yamazato ◽  
Rijiko Matayoshi ◽  
Hiromi Muratani ◽  
...  

Systemic inhibition of nitric oxide synthase (NOS) evokes hypertension, which is enhanced by salt loading, partly via augmented sympathetic activity. We investigated whether inhibition of brain NOS elevates blood pressure (BP) in normotensive rats and, if so, whether the BP elevation is enhanced by salt loading. After a 2-wk low-salt (0.3%) diet, male Sprague-Dawley (SD) rats were divided into four groups. Groups 1 and 2 received a chronic intracerebroventricular infusion of 0.5 mg ⋅ kg−1 ⋅ day−1of N G-monomethyl-l-arginine (l-NMMA), and groups 3 and 4 were given artificial cerebrospinal fluid (aCSF). Groups 1 and 3 were placed on a high-salt (8%) diet, whereas groups 2 and 4 were on a low-salt diet. On day 9or 10, group 1 showed significantly higher mean arterial pressure (MAP) in a conscious unrestrained state (129 ± 3 mmHg vs. 114 ± 3, 113 ± 1, and 108 ± 3 mmHg in groups 2, 3, and 4, respectively, P < 0.05). On a high-salt diet, response of renal sympathetic nerve activity but not of BP to air-jet stress was significantly larger in rats givenl-NMMA than in rats given aCSF (29 ± 4% vs. 19 ± 3%, P < 0.05). When the intracerebroventricular infusions were continued for 3 wk, MAP was significantly higher in rats givenl-NMMA than in rats given aCSF irrespective of salt intake, although the difference was ∼7 mmHg. Thus chronic inhibition of NOS in the brain only slightly elevates BP in SD rats. Salt loading causes a more rapid rise in BP. The mechanisms of the BP elevation and its acceleration by salt loading remain to be elucidated.


1990 ◽  
Vol 258 (3) ◽  
pp. E482-E484 ◽  
Author(s):  
E. P. Gomez-Sanchez ◽  
C. M. Fort ◽  
C. E. Gomez-Sanchez

The chronic intracerebroventricular (icv) infusion of aldosterone in rats and dogs elevates the blood pressure within 10-14 days at doses far below those that produce hypertension systemically. The effect in rats is dose dependent and blocked by the concomitant icv infusion of the antimineralocorticoid, prorenone. The effect of the icv infusion of RU28318, another specific spironolactone mineralocorticoid antagonist, on the hypertension produced by chronic subcutaneous (sc) administration of aldosterone in sensitized rats was reported. Miniosmotic pumps were used to deliver 1 micrograms/h aldosterone sc and 1.1 micrograms/h RU8318 icv. Over a 24-day period the indirect systolic blood pressure of the control, RU28318 icv, and aldosterone sc plus RU28318 icv groups increased from 105 to 123 mmHg and were not significantly different from each other, whereas the aldosterone sc group increased to 156 mmHg. RU28318, icv or sc, did not alter the increase in urine volume produced by aldosterone sc, and there was no significant differences in weight between the groups. This study provides evidence of the importance of the central nervous system in the pathogenesis of hypertension produced by systemic mineralocorticoid excess.


1998 ◽  
Vol 275 (2) ◽  
pp. R548-R554 ◽  
Author(s):  
Michael L. Mathai ◽  
Mark D. Evered ◽  
Michael J. McKinley

This study investigated the effect of intracerebroventricular administration of the angiotensin AT1 receptor antagonist losartan on the natriuresis, pressor effect, and arginine vasopressin (AVP) secretion caused by intracerebroventricular infusion of either ANG II, hypertonic saline, or carbachol. Losartan (1 mg/h) or artificial cerebrospinal fluid (CSF) was infused into the lateral ventricle before, during, and after infusions of either ANG II at 10 μg/h for 1 h, 0.75 mol/l NaCl at 50 μl/min for 20 min, or carbachol at 1.66 μg/min for 15 min. Intracerebroventricular infusions of ANG II, 0.75 mol/l NaCl, or carbachol caused increases in renal Na+ and K+ excretion, arterial pressure, and plasma AVP levels. Increases in arterial pressure, Na+ excretion, and plasma AVP concentration ([AVP]) in response to intracerebroventricular ANG II or intracerebroventricular 0.75 mol/l NaCl were either abolished or attenuated by intracerebroventricular infusion of losartan but not by intracerebroventricular infusion of artificial CSF or intravenous losartan. Intracerebroventricular losartan did not reduce the increase in plasma [AVP] or arterial pressure in response to intracerebroventricular carbachol, but it did attenuate the natriuretic response to intracerebroventricular carbachol. We conclude that an intracerebroventricular dose of losartan (1 mg/h) that inhibits responses to intracerebroventricular ANG II also inhibits vasopressin secretion, natriuresis, and the pressor response to intracerebroventricular hypertonic saline. These results suggest that common neural pathways are involved in the responses induced by intracerebroventricular administration of ANG II and intracerebroventricular hypertonic NaCl. We propose that intracerebroventricular infusion of hypertonic saline activates angiotensinergic pathways in the central nervous system subserving the regulation of fluid and electrolyte balance and arterial pressure in sheep.


2012 ◽  
Vol 302 (7) ◽  
pp. R825-R832 ◽  
Author(s):  
Bing S. Huang ◽  
Roselyn A. White ◽  
Li Bi ◽  
Frans H. H. Leenen

Central infusion of an angiotensin type 1 (AT1) receptor blocker prevents sympathetic hyperactivity and hypertension in Dahl salt-sensitive (S) rats on high salt. In the present study, we examined whether central infusion of a direct renin inhibitor exerts similar effects. Intracerebroventricular infusion of aliskiren at the rate of 0.05 mg/day markedly inhibited the increase in ANG II levels in the cerebrospinal fluid and in blood pressure (BP) caused by intracerebroventricular infusion of rat renin. In Dahl S rats on high salt, intracerebroventricular infusion of aliskiren at 0.05 and 0.25 mg/day for 2 wk similarly decreased resting BP in Dahl S rats on high salt. In other groups of Dahl S rats, high salt intake for 2 wk increased resting BP by ∼25 mmHg, enhanced pressor and sympathoexcitatory responses to air-stress, and desensitized arterial baroreflex function. All of these effects were largely prevented by intracerebroventricular infusion of aliskiren at 0.05 mg/day. Aliskiren had no effects in rats on regular salt. Neither high salt nor aliskiren affected hypothalamic ANG II content. These results indicate that intracerebroventricular infusions of aliskiren and an AT1 receptor blocker are similarly effective in preventing salt-induced sympathetic hyperactivity and hypertension in Dahl S rats, suggesting that renin in the brain plays an essential role in the salt-induced hypertension. The absence of an obvious increase in hypothalamic ANG II by high salt, or decrease in ANG II by aliskiren, suggests that tissue levels do not reflect renin-dependent ANG II production in sympathoexcitatory angiotensinergic neurons.


Sign in / Sign up

Export Citation Format

Share Document