Determinants of high-fat diet hyperphagia: experimental dissection of orosensory and postingestive effects

1995 ◽  
Vol 269 (1) ◽  
pp. R30-R37 ◽  
Author(s):  
Z. S. Warwick ◽  
H. P. Weingarten

High-fat diets often promote greater caloric intake and/or weight gain than high-carbohydrate diets in both laboratory animals and humans. Because altering the fat content of a diet simultaneously changes both its sensory properties and postingestive effects, it is unclear whether high-fat hyperphagia is due to the diet's palatability, its postingestive effects, or both. The present studies isolated the independent capacity of the orosensory and postingestive effects of a liquid high-fat diet (High-Fat) to produce overeating relative to an isocaloric liquid high-carbohydrate (High-CHO) diet. Rats fed High-Fat orally ate more calories and gained more weight over 16 days than rats fed High-CHO orally. One-bottle sham-feeding intake of High-Fat and High-CHO did not differ, but in two-bottle sham-feeding tests High-Fat was clearly preferred. When orosensory influences on intake were equated via chronic self-regulated intragastric feeding, High-Fat still promoted greater intake than High-CHO, although absolute intake across both diets was lower during intragastric feeding relative to oral feeding. An analysis of short-term intake revealed that rats accustomed to infusion of High-CHO increased meal size immediately when switched to High-Fat. The present results, coupled with previous findings, suggest that the postingestive effects of fat enhance daily caloric intake in two ways: 1) during a meal, fat produces less suppression of intake per calorie than carbohydrate; and 2) after a meal, fat produces less suppression of intake per calorie during the intermeal interval than carbohydrate.

Hypertension ◽  
2008 ◽  
Vol 52 (3) ◽  
pp. 549-555 ◽  
Author(s):  
Adam J. Chicco ◽  
Genevieve C. Sparagna ◽  
Sylvia A. McCune ◽  
Christopher A. Johnson ◽  
Robert C. Murphy ◽  
...  

Recent studies indicate that high-fat diets may attenuate cardiac hypertrophy and contractile dysfunction in chronic hypertension. However, it is unclear whether consuming a high-fat diet improves prognosis in aged individuals with advanced hypertensive heart disease or the extent to which differences in its fatty acid composition modulate its effects in this setting. In this study, aged spontaneously hypertensive heart failure rats were administered a standard high-carbohydrate diet or high-fat diet (42% of kilocalories) supplemented with high-linoleate safflower oil or lard until death to determine their effects on disease progression and mortality. Both high-fat diets attenuated cardiac hypertrophy, left ventricular chamber dilation, and systolic dysfunction observed in rats consuming the high-carbohydrate diet. However, the lard diet significantly hastened heart failure mortality compared with the high-carbohydrate diet, whereas the linoleate diet significantly delayed mortality. Both high-fat diets elicited changes in the myocardial fatty acid profile, but neither had any effect on thromboxane excretion or blood pressure. The prosurvival effect of the linoleate diet was associated with a greater myocardial content and linoleate-enrichment of cardiolipin, an essential mitochondrial phospholipid known to be deficient in the failing heart. This study demonstrates that, despite having favorable effects on cardiac morphology and function in hypertension, a high-fat diet may accelerate or attenuate mortality in advanced hypertensive heart disease depending on its fatty acid composition. The precise mechanisms responsible for the divergent effects of the lard and linoleate-enriched diets merit further investigation but may involve diet-induced changes in the content and/or composition of cardiolipin in the heart.


Obesity ◽  
2018 ◽  
Vol 26 (6) ◽  
pp. 1026-1033 ◽  
Author(s):  
Julia A. Licholai ◽  
Katrina P. Nguyen ◽  
Wambura C. Fobbs ◽  
Corbin J. Schuster ◽  
Mohamed A. Ali ◽  
...  

1994 ◽  
Vol 71 (06) ◽  
pp. 755-758 ◽  
Author(s):  
E M Bladbjerg ◽  
P Marckmann ◽  
B Sandström ◽  
J Jespersen

SummaryPreliminary observations have suggested that non-fasting factor VII coagulant activity (FVII:C) may be related to the dietary fat content. To confirm this, we performed a randomised cross-over study. Seventeen young volunteers were served 2 controlled isoenergetic diets differing in fat content (20% or 50% of energy). The 2 diets were served on 2 consecutive days. Blood samples were collected at 8.00 h, 16.30 h and 19.30 h, and analysed for triglycerides, FVII coagulant activity using human (FVII:C) or bovine thromboplastin (FVII:Bt), and FVII amidolytic activity (FVIPAm). The ratio FVII:Bt/FVII:Am (a measure of FVII activation) increased from fasting levels on both diets, but most markedly on the high-fat diet. In contrast, FVII: Am (a measure of FVII protein) tended to decrease from fasting levels on both diets. FVII:C rose from fasting levels on the high-fat diet, but not on the low-fat diet. The findings suggest that high-fat diets increase non-fasting FVII:C, and consequently may be associated with increased risk of thrombosis.


2021 ◽  
Author(s):  
Qiao Jie ◽  
Yue-Zhong Ren ◽  
Yi-wen Wu

High-fat diets(HFD)are defined as lipids accounting for exceeded 30% of total energy in-take, and current research is mostly 45% and 60%. With a view of the tendency that patients who...


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Megha Murali ◽  
Carla Taylor ◽  
Peter Zahradka ◽  
Jeffrey Wigle

Background and Objective: Arterial stiffness is recognized as being an independent predictor of incipient vascular disease associated with obesity and metabolic syndrome. In obese subjects, the decrease in the plasma level of adiponectin, an anti-diabetic and anti-atherogenic adipokine, is well known. Hence the aim of our study was to examine the effect of loss of adiponectin on the development of arterial stiffness in response to a high fat diet. Methods and Results: Male 8-week old adiponectin knockout (APN KO) and C57BL/6 (control) mice were fed a high fat diet (60% Calories from fat) for 12 weeks to induce obesity and insulin resistance (n=10/group). APN KO and C57BL/6 mice were fed a low fat diet (10% Calories from fat) and used as lean controls (n=10/group). After 12 weeks on the high fat diet, the APN KO mice weighed significantly more than the C57BL/6 mice (45.1±1.3 g vs 40.1±1.1 g, p=0.0008) but there was no difference in the final weights between genotypes fed the low fat diet. APN KO mice on both high and low fat diets for 12 weeks developed insulin resistance as measured by oral glucose tolerance test (Area under curve (AUC) mmol/L х min = 437±70 and 438±57) as compared to the C57BL/6 mice fed low or high fat diets (AUC mmol/L х min = 251±27 and 245±43). Arterial stiffness was determined by Doppler pulse wave velocity analysis of the femoral artery. Pulse wave velocity was increased in APN KO mice fed a high fat diet relative to those fed the low fat diet (12.56±0.78 cm/s vs 9.47±0.95 cm/s, p=0.0035; n=8-10). Pulse wave velocity was not different between C57BL/6 control mice on the low or high fat diets (10.63±0.73 cm/s and 10.86±0.50 cm/s), thus revealing that only mice deficient in adiponectin developed arterial stiffness in response to high fat diet. Conclusions: Potentiation of the vascular stiffness in diet-induced obese APN KO mice indicates that adiponectin has a role in modulating vascular structure and the APN KO mouse models the vascular changes that occur in human obesity and metabolic disorders. Morphometric analysis of the aortic tissues for vessel thickness and expression of extracellular proteins will further validate the potential role of adiponectin on the maintenance of arterial elasticity in addition to its known effect on eNOS mediated vasoprotection.


1964 ◽  
Vol 206 (3) ◽  
pp. 603-609 ◽  
Author(s):  
Adawia A. Alousi ◽  
Samuel Mallov

Rats were fasted for several days, placed on diets high in carbohydrate, fat, or containing iodinated casein so as to produce hyperthyroidism, or were chronically injected with epinephrine. Lipoprotein lipase (LPL) activities of homogenates of the hearts of these animals were determined. Significant increases in LPL activity occurred in thyrotoxic animals, in rats receiving epinephrine injections chronically, or after prolonged fasting, while significant lowering of cardiac LPL activity was observed in rats on the high-carbohydrate or high-fat diets. Single doses of fat or single injections of epinephrine had no effect. Addition of epinephrine or of triiodothyronine to heart slices or homogenates in vitro caused no LPL increases. It is postulated that adaptive changes in cardiac LPL activity may occur in response to altered needs for utilization of fatty acids by the heart. Microsomal fractions of heart cells had the highest specific LPL activities, suggesting synthesis of the enzyme by these cellular components, or activity of the enzyme at the endoplasmic reticulum.


1987 ◽  
Vol 117 (6) ◽  
pp. 1115-1120 ◽  
Author(s):  
Colleen K. Grogan ◽  
Hye-Kyung Kim ◽  
Dale R. Romsos

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Sarah Wong ◽  
Rafael de Cabo ◽  
Michel Bernier ◽  
Alberto Diaz-Ruiz ◽  
Tyler Rhinesmith ◽  
...  

Abstract Objectives 4:10 periodic fasting schedule is proposed to improve biomarkers of healthspan through metabolic flexibility in mice on both standard and high fat diets. Methods Our study adopted the 4:10 fasting schedule using the fasting-mimicking diet (FMD) as our model. FMD is a plant-based, low-protein, and low-sugar diet regime implemented for four days every two-week cycle. Its regenerative effect is observed in the refeeding phase following starvation, allowing for the breakdown of cells via increased autophagy. In comparison to stricter fasting regimes such as intermittent fasting, chronic caloric restriction, and periodic fasting, FMD is well-tolerated in the clinical setting. 74 12-month old C57BL/6 mice were randomized into two diet groups: standard diet or high-fat diet. For 4 days out of every fourteen days, the mice were severely caloric restricted and refed with ad-libitum of either standard or high fat diets for the remaining 10 days, matching the controls who were fixed on the ad-libitum diet. The 4:10 fasting schedule was repeated 11 times before the mice were sacrificed. To measure metabolic flexibility, metabolic cages, ELISA, and glucose meters were used. Results Body weight and composition, metabolic flexibility, and insulin sensitivity indicate differences between fasting on diet composition. Not only did those on the fasting high-fat diet (FHFD) remain overweight, identical to their HFD controls, insulin sensitivity was also attenuated in FHFD groups. Fasting standard diet (FSD) had a reduction of 5% in body weight and 15% in body fat. Carbohydrate and lipid metabolism differences indicated by the respiratory exchange ratio as well as motor function performance differences further support the positive impact of fasting on SD groups, not HFD groups. Characteristic of positive healthspan biomarkers, reduced leptin and improved insulin sensitivity was observed with FSD, not FHFD. Conclusions We found that while the FMD schedule improved healthspan as indicated by biomarkers of healthy aging for mice on the standard diet, it could not counteract the negative health effects of the obesogenic diet. These results demonstrate the importance of not only time of feeding but also diet composition in respect to healthspan. Funding Sources National Institute on Aging (NIA) – National Institutes of Health (NIH).


2017 ◽  
Vol 6 ◽  
Author(s):  
Thao Duy Nguyen ◽  
Olena Prykhodko ◽  
Frida Fåk Hållenius ◽  
Margareta Nyman

AbstractButyric acid has been shown to have suppressive effects on inflammation and diseases related to the intestinal tract. The aim of the present study was to investigate whether supplementation of two glycerol esters, monobutyrin (MB) and tributyrin (TB), would reach the hindgut of rats, thus having an effect on the caecal profile of SCFA, microbiota composition and some risk markers associated with chronic inflammation. For this purpose, rats were fed high-fat diets after adding MB (1 and 5 g/kg) and TB (5 g/kg) to a diet without any supplementation (high-fat control; HFC). A low-fat (LF) diet was also included. In the liver, total cholesterol concentrations, LDL-cholesterol concentrations, LDL:HDL ratio, and succinic acid concentrations were reduced in rats given the MB and TB (5 g/kg) diets, compared with the group fed the HFC diet. These effects were more pronounced in MB than TB groups as also expressed by down-regulation of the gene Cyp8b1. The composition of the caecal microbiota in rats fed MB and TB was separated from the group fed the HFC diet, and also the LF diet, as evidenced by the absence of the phylum TM7 and reduced abundance of the genera Dorea (similar to LF-fed rats) and rc4-4. Notably, the caecal abundance of Mucispirillum was markedly increased in the MB group compared with the HFC group. The results suggest that dietary supplementation of MB and TB can be used to counteract disturbances associated with a HFC diet, by altering the gut microbiota, and decreasing liver lipids and succinic acid concentrations.


Sign in / Sign up

Export Citation Format

Share Document