Single-breath CO diffusing capacity influenced by initial alveolar partial pressure of CO

1998 ◽  
Vol 275 (1) ◽  
pp. R339-R342
Author(s):  
Hartmut Heller ◽  
Klaus-Dieter Schuster

The purpose of this study was to assess the influence of incorrect determinations of the initial alveolar partial pressure of carbon monoxide (CO) at the beginning of breath holding (Pia CO) on the pulmonary CO diffusing capacity of the lung (Dl CO). Single-breath maneuvers were performed on 14 anesthetized and artificially ventilated rabbits, using 0.2% CO in nitrogen as the indicator gas mixture. Inflation and deflation procedures were carried out in an identical manner on each animal, with inflation always starting from residual volume. End-tidal partial pressure of CO was determined by respiratory mass spectrometry and was used to calculate Dl CO values with the application of the three-equation ( method 1), as well as the conventional ( method 2), solution. In each rabbit, method 2 caused Dl CO values to be overestimated when compared with method 1, and this overestimation decreased with increasing time intervals of CO uptake. Because we were able to recalculate this deviation using Pia COvalues that were obtained by taking the diffusive removal of CO during inflation into account, we concluded that errors in estimating Pia CO by applying method 2 significantly contribute to the discrepancy between both methods.

1998 ◽  
Vol 84 (2) ◽  
pp. 606-611 ◽  
Author(s):  
Hartmut Heller ◽  
Gabi Fuchs ◽  
Klaus-Dieter Schuster

Heller, Hartmut, Gabi Fuchs, and Klaus-Dieter Schuster. Pulmonary diffusing capacities for oxygen-labeled CO2 and nitric oxide in rabbits. J. Appl. Physiol. 84(2): 606–611, 1998.—We determined the pulmonary diffusing capacity (Dl) for18O-labeled CO2(C18O2) and nitric oxide (NO) to estimate the membrane component of the respective gas conductances. Six anesthetized paralyzed rabbits were ventilated by a computerized ventilatory servo system. Single-breath maneuvers were automatically performed by inflating the lungs with gas mixtures containing 0.9% C18O2or 0.05% NO in nitrogen, with breath-holding periods ranging from 0 to 1 s for C18O2and from 2 to 8 s for NO. The alveolar partial pressures of C18O2and NO were determined by using respiratory mass spectrometry. Dl was calculated from gas exchange during inflation, breath hold, and deflation. We obtained values of 14.0 ± 1.1 and 2.2 ± 0.1 (mean value ± SD) ml ⋅ mmHg−1 ⋅ min−1for[Formula: see text]and Dl NO, respectively. The measured[Formula: see text]/Dl NOratio was one-half that of the theoretically predicted value according to Graham’s law (6.3 ± 0.5 vs. 12, respectively). Analyses of the several mechanisms influencing the determination of[Formula: see text]and Dl NOand their ratio are discussed. An underestimation of the membrane diffusing component for CO2 is considered the likely reason for the low[Formula: see text]/Dl NOratio obtained.


1997 ◽  
Vol 273 (6) ◽  
pp. R2055-R2058
Author(s):  
Hartmut Heller ◽  
Klaus-Dieter Schuster

Pulmonary diffusing capacity of NO (Dl NO) was determined by performing single-breath experiments on six anesthetized paralyzed supine rabbits, applying inspiratory concentrations of NO (Fi NO) within a range of 10 parts per million (ppm) ≤ Fi NO ≤ 800 ppm. Starting from residual volume, the rabbit lungs were inflated by 50 ml of a NO-nitrogen-containing indicator gas mixture. Breath-holding time was set at 0.1, 1, 3, 5, and 7 s. Alveolar partial pressure of NO was determined by analyzing the end-tidal portion from expirates, with the use of respiratory mass spectrometry. In the six animals, pulmonary diffusing capacity of NO averaged Dl NO = 1.92 ± 0.21 ml ⋅ mmHg−1 ⋅ min−1(mean ± SD value). Despite extreme variations in Fi NO, we found very similar Dl NOvalues, and in three rabbits we found identical values even at such different Fi NO levels of 80 ppm or 500, 20, or 200 ppm as well as 10 or 800 ppm. There was also no dependence of Dl NO on the respective duration of the single-breath maneuvers. In addition, the time course of NO removal from alveolar space was independent of applied Fi NOlevels. These results suggest that Dl NOdeterminations are neither affected by chemical reactions of NO in alveolar gas phase as well as in lung tissue nor biased by endogenous release of NO from pulmonary tissue. It is our conclusion that the single-breath diffusing capacity of NO is able to provide a measure of alveolar-capillary gas conductance that is not influenced by the biochemical reactions of NO.


1984 ◽  
Vol 56 (1) ◽  
pp. 52-56 ◽  
Author(s):  
T. S. Hurst ◽  
B. L. Graham ◽  
D. J. Cotton

We studied 10 symptom-free lifetime non-smokers and 17 smokers all with normal pulmonary function studies. All subjects performed single-breath N2 washout tests by either exhaling slowly (“slow maneuver”) from end inspiration (EI) to residual volume (RV) or exhaling maximally (“fast maneuver”) from EI to RV. After either maneuver, subjects then slowly inhaled 100% O2 to total lung capacity (TLC) and without breath holding, exhaled slowly back to RV. In the nonsmokers seated upright phase III slope of single-breath N2 test (delta N2/l) was lower (P less than 0.01) for the fast vs. the slow maneuver, but this difference disappeared when the subjects repeated the maneuvers in the supine position. In contrast, delta N2/l was higher for the fast vs. the slow maneuver (P less than 0.01) in smokers seated upright. For the slow maneuver, delta N2/l was similar between smokers and nonsmokers but for the fast maneuvers delta N2/l was higher in smokers than nonsmokers (P less than 0.01). We suggest that the fast exhalation to RV decreases delta N2/l in normal subjects by decreasing apex-to-base differences in regional ratio of RV to TLC (RV/TLC) but increases delta N2/l in smokers, because regional RV/TLC increases distal to sites of small airways obstruction when the expiratory flow rate is increased.


1963 ◽  
Vol 41 (1) ◽  
pp. 1283-1292
Author(s):  
Edith Rosenberg

The single breath diffusing capacity for CO, DL, and the permeability of the lungs, K, were measured in six male and two female medical students at various lung volumes. The subjects rested 15 minutes before each test and the expired alveolar volume as well as breath-holding time and inspired volume were recorded on a spirogram. The test gas used consisted of 0.3% CO, 0.3% SF6, 20% O2, and the balance N2. The sample of alveolar gas expired after breath-holding was analyzed for CO and SF6 on a vapor fractometer using a 2-meter molecular sieve column. DL varied with the surface area of the subjects as well as with the alveolar volume at which the test was performed. K, on the other hand, was independent of the size of the subjects and decreased towards a constant value as lung volume became large. K should, therefore, be more reproducible than DL. The average permeability of the eight subjects used in this study was 0.0715 ml CO per second per ml of alveolar volume. In every experiment, alveolar volumes were also calculated from the SF6 dilution. These values, VD, were compared to alveolar volumes calculated from the maximum lung volumes, VA. For the males there was no measurable difference between alveolar volumes calculated by these two methods when 2 liters or more of test gas were inspired. It is suggested that the replacement of the measurement of DL in pulmonary function laboratories by an evaluation of K and VD may transform the single breath diffusing capacity test into a useful diagnostic tool.


1962 ◽  
Vol 17 (6) ◽  
pp. 856-860 ◽  
Author(s):  
Josef R. Smith ◽  
Lyle H. Hamilton

A gas chromatograph has been used to analyze gases for the measurement of pulmonary diffusing capacity using the breath-holding technique. The gas mixture used for the measurement consisted of carbon monoxide in air with neon as the insoluble inert gas. The calculated DlCO was unaffected when sulphur hexafloride (SF6) or He was substituted for Ne in the mixture, but since CO and Ne could be most simply and rapidly analyzed, this combination was preferred for the gas mixture used to measure DlCO. The mean DlCO for ten normal subjects was 25.8 ± 4.2 ml/min mm Hg. These results were comparable to values reported in the literature when established methods of analysis were used. An excellent correlation was found between calculated DlCO and the clinical condition of patients with impaired pulmonary diffusing capacity. Submitted on February 14, 1962


1981 ◽  
Vol 51 (6) ◽  
pp. 1463-1470 ◽  
Author(s):  
S. M. Lewis ◽  
D. Z. Rubin ◽  
C. Mittman

Conventional tests of diffusing capacity (DL) consider the lung to be a uniform structure with regard to both ventilation and diffusion. These assumptions are incorrect even in normal subjects. We present a method for determining the distribution of both specific ventilation (SV) and DL from the washin and washout of C18O and simultaneous washout of argon. Both end-tidal and mixed-expired data are fit to a two-compartment lung model; parameters that define SV and DL are assigned to each compartment. From data generated by a model, the parameters recovered were found to be relatively insensitive to realistic levels of noise. Measurements in one subject were highly repeatable. We examined 15 normal subjects and 16 subjects with varying degrees of obstructive lung disease. In both groups the better ventilated spaces generally showed a higher DL. The sum of the total two-compartmental DL's correlated with, but was found to exceed, the value obtained using the steady-state method and generally exceeded the single-breath result. We conclude that this method has potential advantages over conventional methods and is worthy of further study.


1981 ◽  
Vol 51 (5) ◽  
pp. 1306-1313 ◽  
Author(s):  
B. L. Graham ◽  
J. T. Mink ◽  
D. J. Cotton

Using three conventional methods and a new method we measured the single-breath diffusing capacity for carbon monoxide [DLCO(SB)] in a group of normal subjects. Whereas the conventional methods calculated DLCO(SB) from a single equation valid only for breath holding, the new method used three equations, one for each phase of the single-breath maneuver, i.e., inhalation, breath holding, and exhalation. We found that while the conventional methods of calculating DLCO(SB) were greatly affected by variations in the way in which the single-breath maneuver was performed and/or the way in which the alveolar gas sample was collected, these variations had little effect on the calculations of DLCO(SB) using the new method. These results were in close agreement with results from a computerized mathematical lung model in which the diffusing capacity did not change with lung volume. We concluded that the new method significantly improves the accuracy and precision of DLCO(SB) measurements while reducing the effects of maneuver variability. For these reasons comparisons of DLCO(SB) values between patients and normal subjects or between two groups with different pulmonary function may be more valid using the new method than using conventional methods.


1980 ◽  
Vol 48 (6) ◽  
pp. 1035-1037 ◽  
Author(s):  
M. Meyer ◽  
P. Scheid

To measure the acetylene solubility (alpha C2H2) in human blood, a blood sample, which had been equilibrated with a gas mixture containing C2H2, was injected into an airtight acetylene-free vessel, and the gas partial pressure was measured by mass spectrometry after reequilibration. The system was calibrated by injecting into the vessel a known volume of the equilibrating gas mixture. At 37 degrees C, alpha C2H2 averaged 0.768 ± 0.004 (SD) ml STPD.ml blood-1.atm-1, which is only slightly above the data from the literature.


1990 ◽  
Vol 69 (3) ◽  
pp. 945-955 ◽  
Author(s):  
M. Meyer ◽  
S. M. Lewis ◽  
M. Mohr ◽  
H. Schulz ◽  
K. D. Schuster ◽  
...  

Cardiogenic oscillations in the expired partial pressure profiles of two inert gases (He and SF6) were monitored in seven anesthetized paralyzed mechanically ventilated dogs. He and SF6 were administered either intravenously by a membrane oxygenator and partial arteriovenous bypass [venous loading (VL)] or by washin into lung gas [airway loading (AL)]. The single-breath expirograms obtained during constant-flow expiration after inspiration of test gas-free air displayed distinct and regular cardiogenic oscillations. The relative oscillation amplitude (ROA), calculated as oscillation amplitude divided by mixed expired-inspired partial pressure difference, was in the range of 1-8%. The ROA for both He and SF6 was approximately 4.2 times higher in VL than in AL, which indicated that among lung units that emptied sequentially in the cardiac cycle, the effects of alveolar ventilation-perfusion (VA/Q) inequality were more pronounced than those of alveolar ventilation-alveolar volume (VA/VA) inequality. In AL, He and SF6 oscillations were 180 degrees out of phase compared with CO2 and O2 oscillations and with He and SF6 oscillations in VL, which suggests that regions with low VA/VA had high VA/Q and very low Q/VA. The ROA was practically unaffected by breath holding in both AL and VL, which indicates that there was little diffusive or convective (cardiogenic) mixing between the lung units that were responsible for cardiogenic oscillations. The ROA was consistently higher for He than for SF6, and the He-to-SF6 ratio was independent of route of test gas loading, averaging 1.6 in both AL and VL. This result may be explained by laminar Taylor dispersion, whereby oscillations generated in peripheral lung regions are dissipated in inverse proportion to diffusion coefficient during transit through the proximal (larger) airways.


Sign in / Sign up

Export Citation Format

Share Document