scholarly journals Multiple sweet receptors and transduction pathways revealed in knockout mice by temperature dependence and gurmarin sensitivity

2009 ◽  
Vol 296 (4) ◽  
pp. R960-R971 ◽  
Author(s):  
Tadahiro Ohkuri ◽  
Keiko Yasumatsu ◽  
Nao Horio ◽  
Masafumi Jyotaki ◽  
Robert F. Margolskee ◽  
...  

Sweet taste transduction involves taste receptor type 1, member 2 (T1R2), taste receptor type 1, member 3 (T1R3), gustducin, and TRPM5. Because knockout (KO) mice lacking T1R3, gustducin's Gα subunit (Gαgust), or TRPM5 exhibited greatly reduced, but not abolished responses of the chorda tympani (CT) nerve to sweet compounds, it is likely that multiple sweet transduction pathways exist. That gurmarin (Gur), a sweet taste inhibitor, inhibits some but not all mouse CT responses to sweet compounds supports the existence of multiple sweet pathways. Here, we investigated Gur inhibition of CT responses to sweet compounds as a function of temperature in KO mice lacking T1R3, Gαgust, or TRPM5. In T1R3-KO mice, responses to sucrose and glucose were Gur sensitive (GS) and displayed a temperature-dependent increase (TDI). In Gαgust-KO mice, responses to sucrose and glucose were Gur-insensitive (GI) and showed a TDI. In TRPM5-KO mice, responses to glucose were GS and showed a TDI. All three KO mice exhibited no detectable responses to SC45647, and their responses to saccharin displayed neither GS nor a TDI. For all three KO mice, the lingual application of pronase, another sweet response inhibitor, almost fully abolished responses to sucrose and glucose but did not affect responses to saccharin. These results provide evidence for 1) the existence of multiple transduction pathways underlying responses to sugars: a T1R3-independent GS pathway for sucrose and glucose, and a TRPM5-independent temperature sensitive GS pathway for glucose; 2) the requirement for Gαgust in GS sweet taste responses; and 3) the existence of a sweet independent pathway for saccharin, in mouse taste cells on the anterior tongue.

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 437
Author(s):  
Ting Gong ◽  
Weiyong Wang ◽  
Houqiang Xu ◽  
Yi Yang ◽  
Xiang Chen ◽  
...  

Testicular expression of taste receptor type 1 subunit 3 (T1R3), a sweet/umami taste receptor, has been implicated in spermatogenesis and steroidogenesis in mice. We explored the role of testicular T1R3 in porcine postnatal development using the Congjiang Xiang pig, a rare Chinese miniature pig breed. Based on testicular weights, morphology, and testosterone levels, four key developmental stages were identified in the pig at postnatal days 15–180 (prepuberty: 30 day; early puberty: 60 day; late puberty: 90 day; sexual maturity: 120 day). During development, testicular T1R3 exhibited stage-dependent and cell-specific expression patterns. In particular, T1R3 levels increased significantly from prepuberty to puberty (p < 0.05), and expression remained high until sexual maturity (p < 0.05), similar to results for phospholipase Cβ2 (PLCβ2). The strong expressions of T1R3/PLCβ2 were observed at the cytoplasm of elongating/elongated spermatids and Leydig cells. In the eight-stage cycle of the seminiferous epithelium in pigs, T1R3/PLCβ2 levels were higher in the spermatogenic epithelium at stages II–VI than at the other stages, and the strong expressions were detected in elongating/elongated spermatids and residual bodies. The message RNA (mRNA) levels of taste receptor type 1 subunit 1 (T1R1) in the testis showed a similar trend to levels of T1R3. These data indicate a possible role of T1R3 in the regulation of spermatid differentiation and Leydig cell function.


1991 ◽  
Vol 261 (6) ◽  
pp. R1402-R1408 ◽  
Author(s):  
M. Nakamura ◽  
K. Kurihara

The temperature dependence of the canine and rat chorda tympani nerve responses to various taste stimuli was examined. The temperature dependence greatly varied with species of stimuli. In the dog, the tonic responses to fructose, sucrose, acetic acid, and guanosine 5'-monophosphate (GMP) and the response induced by the synergism between monosodium glutamate (MSG) and GMP showed peaks at approximately 30 degrees C, whereas those to NaCl, NH4Cl, and MSG showed peaks between 10 and 20 degrees C. In the rat, the tonic response to NH4Cl increased with an increase in temperature up to 45 degrees C, whereas the responses to other stimuli examined showed peaks at approximately 30 degrees C. The responses to glycine, sucrose, and quinine showed sharp temperature dependence, and the responses to acids (HCl and acetic acid) and salts (NaCl and KCl) showed relatively flat dependence. The effects of the temperature change on dose-response curves for fructose, NH4Cl, and GMP were examined using dogs. The temperature change did not practically affect the thresholds for these stimuli and affected the magnitude of the responses to higher concentrations of stimuli. The origins of the temperature dependence were discussed in terms of taste receptor mechanisms.


CNS Spectrums ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 216-217
Author(s):  
Suhanna Mutti ◽  
Alan R. Hirsch

AbstractIntroductionRelief of phantogeusia through ice cube stimulation has not heretofore been noted.MethodsThis 70-year-old left handed (familial) female noted the onset, three and a half years ago, of reduced taste 80 percent of normal, distorted taste, hallucinated metallic taste, and BMS. Upon application of an ice cube to the tongue, both the metallic taste and the BMS resolved for a few seconds, without impairing her true taste ability. With repeat application, the alleviation effect persists.ResultsAbnormalities in Neurologic Examination: Sensory Examination: Decreased pinprick and temperature bilateral lower extremities. Reflexes: 3+ throughout. Bilateral positive Hoffman’s reflexes. Chemosensory testing: Olfaction: Brief Smell Identification Test: 9 (normosmia). Retronasal Smell Index: 10 (normosmia). Gustation: Propylthiouracil Disc Taste Test: 5 (normogeusia).DiscussionTransient Receptor Potential 5, is expressed in tongue taste buds, facilitating sweet perception, and is temperature dependent (Fujiyama, 2010). Ice may act to reduce such sweet taste receptor discharge, causing an imbalance in taste fiber discharge thus inhibiting the perceived metallic taste. In those who suffer from intractable phantogeusia, a trial of ice cubes or mechanisms to reduce temperature of the tongue is warranted.


1999 ◽  
Vol 81 (6) ◽  
pp. 3087-3091 ◽  
Author(s):  
Yuzo Ninomiya ◽  
Toshiaki Imoto ◽  
Tadataka Sugimura

Sweet taste responses of mouse chorda tympani neurons: existence of gurmarin-sensitive and -insensitive receptor components. Inhibitory effects of gurmarin (gur) on responses to sucrose and other sweeteners of single fibers of the chorda tympani nerve in C57BL mice were examined. Of 30 single fibers that strongly responded to 0.5 M sucrose but were not or to lesser extent responsive to 0.1 M NaCl, 0.01 M HCl, and 0.02 M quinine HCl (sucrose-best fibers), 16 fibers showed large suppression of responses to sucrose and other sweeteners by lingual treatment with 4.8 μM (∼20 μg/ml) gur (suppressed to 4–52% of control: gur-sensitive fibers), whereas the remaining 14 fibers showed no such gur inhibition (77–106% of control: gur-insensitive fibers). In gur-sensitive fibers, responses to sucrose inhibited by gur recovered to ∼70% of control responses after rinsing the tongue with 15 mM β-cyclodextrin and were almost abolished by further treatment with 2% pronase. In gur-insensitive fibers, sucrose responses were not inhibited by gur, but were largely suppressed by pronase. These results suggest existence of two different receptor components for sweeteners with different susceptibilities to gur in mouse taste cells, one gur sensitive and the other gur insensitive. Taste cells possessing each component may be specifically innervated by a particular type of chorda tympani neurons.


2008 ◽  
Vol 33 (13) ◽  
pp. 3135-3145 ◽  
Author(s):  
Taiju Amano ◽  
Etsuko Wada ◽  
Daisuke Yamada ◽  
Ko Zushida ◽  
Hiroshi Maeno ◽  
...  

2016 ◽  
Vol 138 (5) ◽  
pp. 700-709 ◽  
Author(s):  
Melissa A. Snyder ◽  
Kieran McCann ◽  
Maryline J. Lalande ◽  
Jean-Philipe Thivierge ◽  
Richard Bergeron

Sign in / Sign up

Export Citation Format

Share Document