Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction

2006 ◽  
Vol 290 (1) ◽  
pp. F4-F13 ◽  
Author(s):  
Neil G. Docherty ◽  
Orfhlaith E. O'Sullivan ◽  
Declan A. Healy ◽  
John M. Fitzpatrick ◽  
R. William G. Watson

Ureteric obstruction is frequently encountered in primary care urology and can lead to damage to the ipsilateral kidney. Relief of all types of obstruction generally leads to the normalization of any deterioration in renal function noted at diagnosis. However, some evidence from animal models suggests that obstruction can cause progressive deleterious effects on renal function and blood pressure control, especially in the presence of preexisting pathologies such as essential hypertension. The last 10 years have seen a proliferation of studies in rodents wherein complete unilateral ureteric obstruction has been used as a model of renal fibrosis. However, the relevance of the findings to human obstructive uropathy has, in many cases, not been the primary aim. In this review, we outline the major events linking damage to the renal parenchyma and cell death to the evolution of fibrosis following obstruction. Special focus is given to the role of apoptosis as a major cause of cell death during and post-complete ureteric obstruction. Several interventions that reduce tubular apoptosis are discussed in terms of their ability to prevent subsequent progression to end-organ damage and fibrosis.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Luisa Racca ◽  
Valentina Cauda

AbstractCancer has nowadays become one of the leading causes of death worldwide. Conventional anticancer approaches are associated with different limitations. Therefore, innovative methodologies are being investigated, and several researchers propose the use of remotely activated nanoparticles to trigger cancer cell death. The idea is to conjugate two different components, i.e., an external physical input and nanoparticles. Both are given in a harmless dose that once combined together act synergistically to therapeutically treat the cell or tissue of interest, thus also limiting the negative outcomes for the surrounding tissues. Tuning both the properties of the nanomaterial and the involved triggering stimulus, it is possible furthermore to achieve not only a therapeutic effect, but also a powerful platform for imaging at the same time, obtaining a nano-theranostic application. In the present review, we highlight the role of nanoparticles as therapeutic or theranostic tools, thus excluding the cases where a molecular drug is activated. We thus present many examples where the highly cytotoxic power only derives from the active interaction between different physical inputs and nanoparticles. We perform a special focus on mechanical waves responding nanoparticles, in which remotely activated nanoparticles directly become therapeutic agents without the need of the administration of chemotherapeutics or sonosensitizing drugs.


2010 ◽  
Vol 78 (9) ◽  
pp. 3689-3699 ◽  
Author(s):  
Erin K. Lentz ◽  
Rama P. Cherla ◽  
Valery Jaspers ◽  
Bradley R. Weeks ◽  
Vernon L. Tesh

ABSTRACTMice have been extensively employed as an animal model of renal damage caused by Shiga toxins. In this study, we examined the role of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) in the development of toxin-mediated renal disease in mice. Mice pretreated with TNF-α and challenged with Shiga toxin type 1 (Stx1) showed increased survival compared to that of mice treated with Stx1 alone. Conversely, mice treated with Stx1 before TNF-α administration succumbed more quickly than mice given Stx1 alone. Increased lethality in mice treated with Stx1 followed by TNF-α was associated with evidence of glomerular damage and the loss of renal function. No differences in renal histopathology were noted between animals treated with Stx1 alone and the TNF-α pretreatment group, although we noted a sparing of renal function when TNF-α was administered before toxin. Compared to that of treatment with Stx1 alone, treatment with TNF-α after toxin altered the renal cytokine profile so that the expression of proinflammatory cytokines TNF-α and interleukin-1β (IL-1β) increased, and the expression of the anti-inflammatory cytokine IL-10 decreased. Increased lethality in mice treated with Stx1 followed by TNF-α was associated with higher numbers of dUTP-biotin nick end labeling-positive renal tubule cells, suggesting that increased lethality involved enhanced apoptosis. These data suggest that the early administration of TNF-α is a candidate interventional strategy blocking disease progression, while TNF-α production after intoxication exacerbates disease.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Cristina García Caballero ◽  
Melania Guerrero Hue ◽  
Alejandra Palomino Antolín ◽  
Matilde Cabanillas ◽  
Cristina Vazquez Carballo ◽  
...  

Abstract Background and Aims Massive intravascular hemolysis is a common condition of several pathologies. It is associated with acute kidney injury (AKI) and progressive impairment of renal function. In this context, free hemoglobin (Hb) can exert harmful effects by accumulating in the kidney, where induces oxidative stress and it becomes cytotoxic. NADPH oxidase 4 (Nox4) is the principal source of reactive oxygen species (ROS) in the kidney. Nox4 is mostly expressed in proximal tubular cells with lower levels in glomerulus. The role of Nox4 in renal damage is not clear, with studies reporting beneficial or deleterious actions depending of the environmental conditions. For that reason we aimed to investigate the role of Nox4 in massive intravascular hemolysis-associated AKI. Method To study the role of Nox4 in AKI caused by massive intravascular hemolysis, we performed an experimental model of intravascular hemolysis by intraperitoneal injection of phenylhydrazine (200 mg/kg) in wild type (Nox4+/+) and Nox4 knockout mice (Nox4-/-). Mice were sacrificed 24 and 72 hours after intravascular hemolysis induction. We collected serum, urine and tissues sample. We analyzed renal function, oxidative stress, cell death and inflammation in these samples. In other experiments, wild type mice were treated with GKT137831 (10mg/kg/day), a potent Nox4 and Nox1 inhibitor, and mice were sacrificed 72h after induction of hemolysis. We also performed in vitro experiments in murine tubular epithelial cells (MCT) and murine podocytes cells to investigate the regulation of Nox4 in Hb-stimulated cells treated or not with GKT137831. Results Induction of intravascular hemolysis in Nox4+/+ mice increased creatinine and BUN levels and enhanced the expression of tubular injury markers, such as NGAL. These pathological effects were reduced in Nox4 knockout mice. Then, we analyzed oxidative stress in our experimental model thought determination of HO-1, ferritin, GSH and lipid peroxidation levels. All of these oxidative markers were reduced in Nox4-/- mice with intravascular hemolysis as compared with Nox4+/+ mice. We also observed that inflammatory markers such as IL-6, cell death and podocytes injury markers were reduced in Nox4-/- mice than in wild type mice, specially 72 hours after phenylhydrazine injection. In line with these results, GKT137831 administration ameliorated intravascular hemolysis-associated renal function impairment. Moreover, oxidative stress, tubular injury markers and podocyte injury were reduced in hemolytic mice treated with GKT137831. GKT137831 also reduced Hb- and heme-mediated oxidative stress in MCT and podocytes. Conclusion Our results show the important role of Nox4 in renal injury associated to massive intravascular hemolysis. Moreover, the inhibition of Nox4 may be a potential therapeutic target to prevent renal damage associated to Hb accumulation. These findings provide new insights into novel aspects of Hb-toxicity and may have important pathogenic and therapeutic implications for intravascular hemolysis related diseases


Author(s):  
David L Mattson ◽  
John Henry Dasinger ◽  
Justine M Abais-Battad

Abstract Humans with salt-sensitive (SS) hypertension demonstrate increased morbidity, increased mortality, and renal end-organ damage when compared with normotensive subjects or those with salt-resistant hypertension. Increasing evidence indicates that immune mechanisms play an important role in the full development of SS hypertension and associated renal damage. Recent experimental advances and studies in animal models have permitted a greater understanding of the mechanisms of activation and action of immunity in this disease process. Evidence favors a role of both innate and adaptive immune mechanisms that are triggered by initial, immune-independent alterations in blood pressure, sympathetic activity, or tissue damage. Activation of immunity, which can be enhanced by a high-salt intake or by alterations in other components of the diet, leads to the release of cytokines, free radicals, or other factors that amplify renal damage and hypertension and mediate malignant disease.


Sign in / Sign up

Export Citation Format

Share Document