Endothelin-1 activates mesangial cell ERK1/2 via EGF-receptor transactivation and caveolin-1 interaction

2003 ◽  
Vol 284 (2) ◽  
pp. F303-F312 ◽  
Author(s):  
Hong Hua ◽  
Snezana Munk ◽  
Catharine I. Whiteside

Endothelin-1 (ET-1) stimulates glomerular mesangial cell proliferation and extracellular matrix protein transcription through an ERK1/2-dependent pathway. In this study, we determined whether ET-1 activation of glomerular mesangial cell ERK1/2 is mediated through EGF receptor (EGF-R) transactivation and whether intact caveolae are required. We showed that ET-1 stimulated tyrosine phosphorylation of the EGF-R in primary cultured, growth-arrested rat mesangial cells. In response to ET-1, ERK1/2 phosphorylation was increased by 27 ± 1-fold and attenuated by AG-1478, a specific EGF-R inhibitor, to 9 ± 1-fold. Moreover, filipin III and β-cyclodextrin, two cholesterol-depleting drugs known to disrupt caveolae, significantly reduced ET-1-induced phosphorylation of ERK1/2. In addition, preincubation of mesangial cells with a myristoylated peptide that binds to the caveolin-1 scaffolding domain diminished ET-1 activation of ERK1/2. ET-1 caused interaction of caveolin-1 with phosphorylated ERK1/2 identified by coimmunoprecipitation. Activation of ERK1/2 and its interaction with caveolin-1 were reduced by AG-1478, β-cyclodextrin, or inhibition of PKC. Phosphorylated ERK1/2 localized at focal adhesion complexes along with phospho-caveolin-1, suggesting specific sites of compartmentalization of these signaling molecules. Hence, ET-1 activates mesangial cell ERK1/2 predominantly through a pathway involving EGF-R transactivation, leading to a mechanism involving attachment to caveolin-1, presumably in caveolae.

2013 ◽  
Vol 304 (6) ◽  
pp. F820-F830 ◽  
Author(s):  
Tingting Wu ◽  
Baifang Zhang ◽  
Feng Ye ◽  
Zeling Xiao

VEGF is known to be an endothelial cell mitogen that stimulates angiogenesis by promoting endothelial cell survival, proliferation, migration, and differentiation. Recent studies have suggested that VEGF may play a pivotal role in glomerular sclerosis through extracellular matrix protein (ECM) accumulation, although the signaling mechanism is still unclear. The GTPase RhoA has been implicated in VEGF-induced type IV collagen accumulation in some settings. Here we study the role of different VEGF receptors and membrane microdomain caveolae in VEGF-induced RhoA activation and fibronectin upregulation in mesangial cells (MCs). In primary rat MC, VEGF time and dose dependently increased fibronectin production. Rho pathway inhibition blocked VEGF-induced fibronectin upregulation. VEGF-induced RhoA activation was prevented by disrupting caveolae with cholesterol depletion and rescued by cholesterol repletion. VEGF stimulation led to a markedly increased VEGFR2/caveolin-1 but failed to increase VEGFR1/caveolin-1 association. VEGF also increased caveolin-1/Src association and activated Src, and Src inhibitor blocked RhoA activation and fibronectin upregulation. Src-mediated phosphorylation of caveolin-1 on Y14 has also been implicated in signaling responses. Overexpression of nonphosphorylatable caveolin-1 Y14A prevented VEGF-induced RhoA activation and fibronectin upregulation. In vivo, although VEGFR1 and VEGFR2 protein levels were both increased in the kidney cortices of diabetic rats, VEGFR2/caveolin-1 association but not VEGFR1/caveolin-1 association was significantly increased. In conclusion, VEGF-induced RhoA activation and fibronectin upregulation require caveolae and caveolin-1 interaction with VEGFR2 and Src. Interference with caveolin/-ae signaling may provide new avenues for the treatment of fibrotic renal disease.


2009 ◽  
Vol 219 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Victoriya A. Rufanova ◽  
Anna Alexanian ◽  
Tetsuro Wakatsuki ◽  
Adam Lerner ◽  
Andrey Sorokin

2020 ◽  
Vol 295 (42) ◽  
pp. 14262-14278
Author(s):  
Soumya Maity ◽  
Falguni Das ◽  
Balakuntalam S. Kasinath ◽  
Nandini Ghosh-Choudhury ◽  
Goutam Ghosh Choudhury

Interaction of transforming growth factor-β (TGFβ)-induced canonical signaling with the noncanonical kinase cascades regulates glomerular hypertrophy and matrix protein deposition, which are early features of glomerulosclerosis. However, the specific target downstream of the TGFβ receptor involved in the noncanonical signaling is unknown. Here, we show that TGFβ increased the catalytic loop phosphorylation of platelet-derived growth factor receptor β (PDGFRβ), a receptor tyrosine kinase expressed abundantly in glomerular mesangial cells. TGFβ increased phosphorylation of the PI 3-kinase–interacting Tyr-751 residue of PDGFRβ, thus activating Akt. Inhibition of PDGFRβ using a pharmacological inhibitor and siRNAs blocked TGFβ-stimulated phosphorylation of proline-rich Akt substrate of 40 kDa (PRAS40), an intrinsic inhibitory component of mTORC1, and prevented activation of mTORC1 in the absence of any effect on Smad 2/3 phosphorylation. Expression of constitutively active myristoylated Akt reversed the siPDGFRβ-mediated inhibition of mTORC1 activity; however, co-expression of the phospho-deficient mutant of PRAS40 inhibited the effect of myristoylated Akt, suggesting a definitive role of PRAS40 phosphorylation in mTORC1 activation downstream of PDGFRβ in mesangial cells. Additionally, we demonstrate that PDGFRβ-initiated phosphorylation of PRAS40 is required for TGFβ-induced mesangial cell hypertrophy and fibronectin and collagen I (α2) production. Increased activating phosphorylation of PDGFRβ is also associated with enhanced TGFβ expression and mTORC1 activation in the kidney cortex and glomeruli of diabetic mice and rats, respectively. Thus, pursuing TGFβ noncanonical signaling, we identified how TGFβ receptor I achieves mTORC1 activation through PDGFRβ-mediated Akt/PRAS40 phosphorylation to spur mesangial cell hypertrophy and matrix protein accumulation. These findings provide support for targeting PDGFRβ in TGFβ-driven renal fibrosis.


2013 ◽  
Vol 305 (6) ◽  
pp. F871-F880 ◽  
Author(s):  
Wenpeng Cui ◽  
Hasiyeti Maimaitiyiming ◽  
Xinyu Qi ◽  
Heather Norman ◽  
Shuxia Wang

Obesity is prevalent worldwide and is a major risk factor for many diseases including renal complications. Thrombospondin 1 (TSP1), a multifunctional extracellular matrix protein, plays an important role in diabetic kidney diseases. However, whether TSP1 plays a role in obesity-related kidney disease is unknown. In the present studies, the role of TSP1 in obesity-induced renal dysfunction was determined by using a diet-induced obese mouse model. The results demonstrated that TSP1 was significantly upregulated in the kidney from obese mice. The increased TSP1 was localized in the glomerular mesangium as well as in the tubular system from obese wild-type mice. Obese wild-type mice developed renal hypertrophy and albuminuria, which was associated with increased kidney macrophage infiltration, augmented kidney inflammation, and activated transforming growth factor (TGF)-β signaling and renal fibrosis. In contrast, obese TSP1-deficient mice did not develop these kidney damages. Furthermore, in vitro studies demonstrated that leptin treatment stimulated the expression of TSP1, TGF-β1, fibronectin, and collagen type IV in mesangial cells isolated from wild-type mice. These leptin-stimulated effects were abolished in TSP1-deficient mesangial cells. Taken together, these data suggest that TSP1 is an important mediator for obesity- or hyperleptinemia-induced kidney dysfunction.


2019 ◽  
Vol 244 (14) ◽  
pp. 1193-1201 ◽  
Author(s):  
Linjing Huang ◽  
Rong Ma ◽  
Tingting Lin ◽  
Sarika Chaudhari ◽  
Parisa Y Shotorbani ◽  
...  

Glomerular mesangial cell is the major source of mesangial matrix. Our previous study demonstrated that store-operated Ca2+ channel signaling suppressed extracellular matrix protein production by mesangial cells. Recent studies demonstrated that glucagon-like peptide-1 receptor (GLP-1R) pathway had renoprotective effects. However, the underlying mechanism(s) remains unclear. The present study was aimed to determine if activation of GLP-1R decreased extracellular matrix protein production by mesangial cells through upregulation of store-operated Ca2+ function. Experiments were conducted in cultured human mesangial cells. Liraglutide and exendin 9–39 were used to activate and inhibit GLP-1R, respectively. Store-operated Ca2+ function was estimated by evaluating the SOC-mediated Ca2+ entry (SOCE). We found that liraglutide treatment reduced high glucose-stimulated production of fibronectin and collagen IV. The inhibitory effects of liraglutide were not observed in the presence of exendin 9–39. Exendin-4, another GLP-1R agonist also blunted high glucose-stimulated fibronectin and collagen IV production. Treatment of human mesangial cells with liraglutide for 24 h significantly attenuated the high glucose-induced reduction of Orai1 protein. Consistently, Ca2+ imaging experiments showed that the inhibition of high glucose on SOCE was significantly attenuated by liraglutide. However, in the presence of exendin 9–39, liraglutide failed to reverse the high glucose effect. Furthermore, liraglutide effects on fibronectin and collagen IV protein abundance were significantly attenuated by GSK-7975A, a selective blocker of store-operated Ca2+. Taken together, our findings suggest that GLP-1R signaling inhibited high glucose-induced extracellular matrix protein production in mesangial cells by restoring store-operated Ca2+ function. Impact statement Diabetic kidney disease continues to be a major challenge to health care system in the world. There are no known therapies currently available that can cure the disease. The present study provided compelling evidence that activation of GLP-1R inhibited extracellular matrix protein production by glomerular mesangial cells. We further showed that the beneficial effect of GLP-1R was attributed to upregulation of store-operated Ca2+ channel function. Therefore, we identified a novel mechanism contributing to the renal protective effects of GLP-1R pathway. Activation of GLP-1R pathway and/or store-operated Ca2+ channel signaling in MCs could be an option for patients with diabetic kidney disease.


1991 ◽  
Vol 261 (3) ◽  
pp. F488-F494 ◽  
Author(s):  
L. A. Bruggeman ◽  
E. A. Horigan ◽  
S. Horikoshi ◽  
P. E. Ray ◽  
P. E. Klotman

The vasoconstrictor eicosanoid thromboxane plays an important role in the pathogenesis of several renal diseases. As an autacoid, its local release alters blood flow and induces platelet aggregation. We report a direct stimulatory effect of thromboxane on extracellular matrix protein production and gene expression in vitro. Treatment of two cell types, differentiated mouse teratocarcinoma cells (F9+) and human glomerular mesangial cells, with two different thromboxane analogues resulted in increased production of components of the extracellular matrix including fibronectin and the basement membrane proteins laminin and type IV collagen. These responses to thromboxane were not the result of a mitogenic effect of thromboxane nor the result of an increase in total cellular protein. The increased production of extracellular matrix proteins was, at least in part, due to an increase in the steady-state level of mRNA for these genes. Furthermore, the effect of thromboxane was markedly inhibited by cotreatment with a thromboxane-receptor antagonist. These results suggest a new potential role for thromboxane as a mediator of the sclerotic and fibrotic responses to injury.


1996 ◽  
Vol 271 (1) ◽  
pp. F21-F29 ◽  
Author(s):  
Z. S. Stevanovic ◽  
M. W. Salter ◽  
C. I. Whiteside

The role of extracellular chloride in the regulation of mesangial cell calcium responsiveness to vasopressor peptides was explored. First, the components of vasopressor-stimulated calcium signaling were defined in rat mesangial cells cultured on coverslips and preloaded with fura 2. By spectrofluorometry, manganese uptake (reflecting divalent cation channel activation) was observed by quenching of fura 2, or intracellular cytosolic calcium concentration was calculated by dual-excitation ratiometric measurement. In cells depolarized with KCl (45 mM), enhanced manganese uptake or increased cytosolic calcium were inhibited with verapamil (10 microM). Pretreatment of mesangial cells with verapamil reduced the sustained calcium level in response to endothelin-1 (0.1 microM) by 65 +/- 6% (means +/- SE, n = 12) and to vasopressin (1 microM) by 62 +/- 12% (n = 8). Perforated cell patch-clamp measurement confirmed that endothelin-1 stimulated a sustained increase in cytosolic calcium or divalent cation entry only in the presence of simultaneous depolarization. In chloride-free buffer (chloride replaced with impermeant anions), sustained calcium response to endothelin-1 was reduced by 72 +/- 8 (n = 8) and by 65 +/- 4% (n = 8) in the presence of the chloride channel inhibitor, 5-nitro-2-(3-phenylpropylamino)benzoic acid (55 microM). In chloride-free buffer, cytosolic calcium (unstimulated) increased to > 200 nM by 30 min. These data indicate that reduced extracellular chloride increases mesangial cell basal cytosolic calcium and decreases the transient and sustained cytosolic calcium response to vasopressor peptides.


1997 ◽  
Vol 64 (3) ◽  
pp. 344-345
Author(s):  
A. Mukhtar

It has been suggested that mesangial cell contraction can adapt the glomerular tuft in response to variations in extracellular volume, although the relevance of mesangial cell contraction for the regulation of glomerular haemodynamics appeared to be small. Mesangial matrix is an intercellular substance morphologically similar to but biochemically distinct from glomerular basement membrane. This study measures the amount of stimulated and non-stimulated mesangial cell protein production in culture using the Bradford technique. This study shows the effect of cytokines in altering extracellular matrix proteins produced by mesangial cells and it shows that IL-1 increases the amount of matrix proteins while PMA decreases them compared to the non-stimulated cells. These in turn could lead to the alteration of pore size, matrix properties and filtration, and thus influence the development and progression of glomerular diseases.


Sign in / Sign up

Export Citation Format

Share Document