Regulation by glucocorticoids and osmolality of expression of ROMK (Kir 1.1), the apical K channel of thick ascending limb

2003 ◽  
Vol 284 (5) ◽  
pp. F977-F986 ◽  
Author(s):  
Morgan Gallazzini ◽  
Amel Attmane-Elakeb ◽  
David B. Mount ◽  
Steven C. Hebert ◽  
Maurice Bichara

Mechanisms of regulation of ROMK channel mRNA and protein expression in medullary thick ascending limb (MTAL) were assessed in rat MTAL fragments incubated for 7 h. ROMK mRNA was quantified by quantitative RT-PCR and ROMK protein by immunoblotting analysis of crude membranes. Medium hyperosmolality (450 mosmol/kgH2O; NaCl plus urea added to isoosmotic medium) increased ROMK mRNA ( P < 0.04) and protein ( P < 0.006), and 10 nM dexamethasone also increased ROMK mRNA ( P < 0.02). Hyperosmolality and dexamethasone had no additive effects on ROMK mRNA. NaCl alone, but not urea or mannitol, reproduced the hyperosmolality effect on ROMK mRNA. 1-Deamino-(8-d-arginine) vasopressin (1 nM) or 0.5 mM 8-bromo-cAMP had no effect per se on ROMK mRNA and protein. However, 8-bromo-cAMP abolished the stimulatory effect of dexamethasone on ROMK mRNA in the isoosmotic but not in the hyperosmotic medium ( P < 0.004). In in vivo studies, the abundance of ROMK protein and mRNA increased in adrenalectomized (ADX) rats infused with dexamethasone compared with ADX rats ( P < 0.02). These results establish glucocorticoids and medium NaCl concentration as direct regulators of MTAL ROMK mRNA and protein expression, which may be modulated by cAMP-dependent factors.

2011 ◽  
Vol 300 (4) ◽  
pp. F966-F975 ◽  
Author(s):  
Shoujin Hao ◽  
Hong Zhao ◽  
Zbigniew Darzynkiewicz ◽  
Sailaja Battula ◽  
Nicholas R. Ferreri

The effects of Na+-K+-2Cl− cotransporter type 2 (NKCC2) isoforms on the regulation of nuclear factor of activated T cells isoform 5 (NFAT5) were determined in mouse medullary thick ascending limb (mTAL) cells exposed to high NaCl concentration. Primary cultures of mTAL cells and freshly isolated mTAL tubules, both derived from the outer medulla (outer stripe>inner stripe), express NKCC2 isoforms A and F. The relative expression of NKCC2A mRNA was approximately twofold greater than NKCC2F in these preparations. The abundance of NKCC2A mRNA, but not NKCC2F mRNA, increased approximately twofold when mTAL cells were exposed for 2 h to a change in osmolality from 300 to 500 mosmol/kgH2O, produced with NaCl. Total NKCC2 protein expression also increased. Moreover, a 2.5-fold increase in NFAT5 mRNA accumulation was observed after cells were exposed to 500 mosmol/kgH2O for 4 h. Laser-scanning cytometry detected a twofold increase in endogenous NFAT5 protein expression in response to high NaCl concentration. Pretreatment with the loop diuretic bumetanide dramatically reduced transcriptional activity of the NFAT5-specific reporter construct TonE-Luc in mTAL cells exposed to high NaCl. Transient transfection of mTAL cells with shRNA vectors targeting NKCC2A prevented increases in NFAT5 mRNA abundance and protein expression and inhibited NFAT5 transcriptional activity in response to hypertonic stress. Silencing of NKCC2F mRNA did not affect NFAT5 mRNA accumulation but partially inhibited NFAT5 transcriptional activity. These findings suggest that NKCC2A and NKCC2F exhibit differential effects on NFAT5 expression and transcriptional activity in response to hypertonicity produced by high NaCl concentration.


2021 ◽  
Vol 30 ◽  
pp. 096368972097873
Author(s):  
Jing Li ◽  
Youming Zhu ◽  
Na Li ◽  
Tao Wu ◽  
Xianyu Zheng ◽  
...  

The lack of vasculogenesis often hampers the survivability and integration of newly engineered tissue grafts within the host. Autologous endothelial cells (ECs) are an ideal cell source for neovascularization, but they are limited by their scarcity, lack of proliferative capacity, and donor site morbidity upon isolation. The objective of this study was to determine whether differentiation of human dental pulp stem cells (DPSCs) into the endothelial lineage can be enhanced by recombinant ETV2 overexpression. DPSCs were extracted from fresh dental pulp tissues. ETV2 overexpression in DPSCs was achieved by lentiviral infection and cellular morphological changes were evaluated. The mRNA and protein expression levels of endothelial-specific markers were assessed through quantitative real-time polymerase chain reaction, western blot, immunofluorescence staining, and flow cytometry. The tube formation assay and Matrigel plug assay were also performed to evaluate the angiogenic potential of the ETV2-transduced cells in vitro and in vivo, respectively. Additionally, proteomic analysis was performed to analyze global changes in protein expression following ETV2 overexpression. After lentiviral infection, ETV2-overexpressing DPSCs showed endothelial-like morphology. Compared with control DPSCs, significantly higher mRNA and protein expression levels of endothelial-specific genes, including CD31, VE-Cadherin, VEGFR1, and VEGFR2, were detected in ETV2-overexpressing DPSCs. Moreover, ETV2 overexpression enhanced capillary-like tube formation on Matrigel in vitro, as well as neovascularization in vivo. In addition, comparative proteomic profiling showed that ETV2 overexpression upregulated the expression of vascular endothelial growth factor (VEGF) receptors, which was indicative of increased VEGF signaling. Taken together, our results indicate that ETV2 overexpression significantly enhanced the endothelial differentiation of DPSCs. Thus, this study shows that DPSCs can be a promising candidate cell source for tissue engineering applications.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 521
Author(s):  
Zhenhua Shen ◽  
Lin Huang ◽  
Suyu Jin ◽  
Yucai Zheng

The objective of this study was to explore the molecular mechanism for male sterility of yak hybrids based on two demethylases. Total RNA was extracted from the testes of adult yaks (n = 10) and yak hybrids (cattle–yaks, n = 10). The coding sequences (CDS) of two lysine demethylases (KDMs), KDM1A and KDM4B, were cloned by RT-PCR. The levels of KDM1A and KDM4B in yaks and cattle–yaks testes were detected using Real-time PCR and Western blotting for mRNA and protein, respectively. In addition, the histone methylation modifications of H3K36me3 and H3K27me3 were compared between testes of yaks and cattle–yaks using ELISA. The CDS of KDM1A and KDM4B were obtained from yak testes. The results showed that the CDS of KDM1A exhibited two variants: variant 1 has a CDS of 2622 bp, encoding 873 amino acids, while variant 2 has a CDS of 2562 bp, encoding 853 amino acids. The CDS of the KDM4B gene was 3351 bp in length, encoding 1116 amino acids. The mRNA and protein expression of KDM1A and KDM4B, as well as the level of H3K36me3, were dramatically decreased in the testes of cattle–yaks compared with yaks. The present results suggest that the male sterility of cattle–yaks might be associated with reduced histone methylation modifications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takuya Oba ◽  
Norihiro Sato ◽  
Yasuhiro Adachi ◽  
Takao Amaike ◽  
Yuzan Kudo ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDAC) is characterised by dense desmoplasia and hypoxic microenvironment. Our previous reports demonstrated that hyaluronan (HA), especially low-molecular-weight HA, provides a favourable microenvironment for PDAC progression. However, the effect of hypoxia on HA metabolism remains unknown. Using quantitative real-time RT-PCR and western blot analysis, we analysed the changes in the expression of HA-synthesizing enzymes (HAS2 and HAS3) and HA-degrading enzymes (HYAL1, KIAA1199/CEMIP) in PDAC cell lines under hypoxic conditions. Hypoxia increased the mRNA and protein expression of KIAA1199, whereas it decreased HYAL1 expression. The expression of HAS3 was increased and HAS2 remained unchanged in response to hypoxia. The effect of KIAA1199 on hypoxia-induced cell migration was determined using a transwell migration assay and small-interfering RNA (siRNA). Hypoxia enhanced the migratory ability of PDAC cells, which was inhibited by KIAA1199 knockdown. We also used immunohistochemistry to analyse the protein expression of hypoxia inducible factor (HIF) 1α and KIAA1199 in PDAC tissues. There was a significant immunohistochemically positive correlation between KIAA1199 and HIF1α. These findings suggest that hypoxia-induced KIAA1199 expression may contribute to enhanced motility in PDAC.


2004 ◽  
Vol 287 (3) ◽  
pp. F404-F410 ◽  
Author(s):  
Nicolas Lerolle ◽  
Soline Bourgeois ◽  
Françoise Leviel ◽  
Gaëtan Lebrun ◽  
Michel Paillard ◽  
...  

NaCl reabsorption in the medullary thick ascending limb of Henle (MTALH) contributes to NaCl balance and is also responsible for the creation of medullary interstitial hypertonicity. Despite the presence of angiotensin II subtype 1 (AT1) receptors in both the luminal and the basolateral plasma membranes of MTALH cells, no information is available on the effect of angiotensin II on NaCl reabsorption in MTALH and, furthermore, on angiotensin II-dependent medullary interstitial osmolality. MTALHs from male Sprague-Dawley rats were isolated and microperfused in vitro; transepithelial net chloride absorption ( JCl) as well as transepithelial voltage ( Vte) were measured. Luminal or peritubular 10−11 and 10−10 M angiotensin II had no effect on JCl or Vte. However, 10−8 M luminal or peritubular angiotensin II reversibly decreased both JCl and Vte. The effect of both luminal and peritubular angiotensin II was prevented by the presence of losartan (10−6 M). By contrast, PD-23319, an AT2-receptor antagonist, did not alter the inhibitory effect of 10−8 M angiotensin II. Finally, no additive effect of luminal and peritubular angiotensin II was observed. We conclude that both luminal and peritubular angiotensin II inhibit NaCl absorption in the MTALH via AT1 receptors. Because of intrarenal angiotensin II synthesis, angiotensin II concentration in medullary tubular and interstitial fluids may be similar in vivo to the concentration that displays an inhibitory effect on NaCl reabsorption under the present experimental conditions.


1996 ◽  
Vol 271 (1) ◽  
pp. C218-C225 ◽  
Author(s):  
A. Blanchard ◽  
F. leviel ◽  
M. Bichara ◽  
R. A. Podevin ◽  
M. Paillard

We studied [K+]i and [K+]o, where subscripts i and o refer to intracellular and extracellular, respectively, concentration dependency of the kinetic properties of the electroneutral K(+)-HCO3-cotransport, using suspensions of rat medullary thick ascending limb (mTAL). With the use of nigericin and monensin, [K+]i was clamped at various values, while maintaining [Na+]i = [Na+]o = 37 mM, [HCO3-]i = [HCO3-]o = 23 mM, and pHi = pHo = 7.4. As indicated by 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein HCO3(-)-dependent rates of change in pHi, at constant [K+]i, increasing the magnitude of the outward K+ gradient by varying [K+]o saturated HCO3-efflux with a Michaelis-Menten curve (apparent Michaelis constant for [K+]o = 2 mM, Hill coefficient = 1). On the other hand, increasing [K+]i from 30 to 140 mM, while either [K+]o or the magnitude of the K+ concentration gradient was fixed, saturated HCO3- efflux with a sigmoidal curve and yielded a Hill coefficient of 3.4 and 50% of maximum velocity at 70 mM [K+]i. These results indicate that [K+]i, independent of its role as a transportable substrate for the cotransport with HCO3-, has a role as an allosteric activator of the K(+)-HCO3- cotransporter. Such an allosteric modulation may contribute to the maintenance of net HCO3- absorption despite large in vivo physiological variations of K+ concentration in the medullary interstitium.


Rheumatology ◽  
2019 ◽  
Vol 59 (9) ◽  
pp. 2258-2263 ◽  
Author(s):  
Tiago Carvalheiro ◽  
Beatriz Malvar Fernández ◽  
Andrea Ottria ◽  
Barbara Giovannone ◽  
Wioleta Marut ◽  
...  

Abstract Objectives SSc is an autoimmune disease characterized by inflammation, vascular injury and excessive fibrosis in multiple organs. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that regulates processes involved in SSc pathology, such as inflammation and fibrosis. In vivo and in vitro studies have implicated SPARC in SSc, but it is unclear if the pro-fibrotic effects of SPARC on fibroblasts are a result of intracellular signalling or fibroblast interactions with extracellular SPARC hampering further development of SPARC as a potential therapeutic target. This study aimed to analyse the potential role of exogenous SPARC as a regulator of fibrosis in SSc. Methods Dermal fibroblasts from both healthy controls and SSc patients were stimulated with SPARC alone or in combination with TGF-β1, in the absence or presence of a TGF receptor 1 inhibitor. mRNA and protein expression of extracellular matrix components and other fibrosis-related mediators were measured by quantitative PCR and western blot. Results Exogenous SPARC induced mRNA and protein expression of collagen I, collagen IV, fibronectin 1, TGF-β and SPARC by dermal fibroblasts from SSc patients, but not from healthy controls. Importantly, exogenous SPARC induced the activation of the tyrosine kinase SMAD2 and pro-fibrotic gene expression induced by SPARC in SSc fibroblasts was abrogated by inhibition of TGF-β signalling. Conclusion These results indicate that exogenous SPARC is an important pro-fibrotic mediator contributing to the pathology driving SSc but in a TGF-β dependent manner. Therefore, SPARC could be a promising therapeutic target for reducing fibrosis in SSc patients, even in late states of the disease.


1998 ◽  
Vol 274 (3) ◽  
pp. F453-F462 ◽  
Author(s):  
Rickey Rivers ◽  
Anne Blanchard ◽  
Dominique Eladari ◽  
Francois Leviel ◽  
Michel Paillard ◽  
...  

The medullary thick ascending limb (MTAL) reabsorbs solute without water and concentrates [Formula: see text] in the interstitium without a favorable pH gradient, activities which require low water and NH3 permeabilities. The contributions of different apical and basolateral membrane structures to these low permeabilities are unclear. We isolated highly purified apical and basolateral MTAL plasma membranes and measured, by stopped-flow fluorometry, their permeabilities to water, urea, glycerol, protons, and NH3. Osmotic water permeability at 20°C averaged 9.4 ± 0.8 × 10−4 cm/s for apical and 11.9 ± 0.5 × 10−4cm/s for basolateral membranes. NH3 permeabilities at 20°C averaged 0.0023 ± 0.00035 and 0.0035 ± 0.00080 cm/s for apical and basolateral membranes, respectively. These values are consistent with those obtained in isolated perfused tubules and can account for known aspects of MTAL function in vivo. Because the apical and basolateral membrane unit permeabilities are similar, the ability of the apical membrane to function as the site of barrier function arises from its very small surface area when compared with the highly redundant basolateral membrane.


1995 ◽  
Vol 268 (5) ◽  
pp. F960-F966 ◽  
Author(s):  
J. Schnermann

The furosemide sensitivity of the tubuloglomerular feedback (TGF) response has suggested an important role for the Na-2Cl-K cotransporter in the mechanism by which increased luminal NaCl concentration causes afferent arteriolar vasoconstriction. The present experiments in anesthetized rats were performed to evaluate the effect of K channel blockade with Ba on TGF, since Ba has been shown to inhibit NaCl transport in the thick ascending limb. The presence of either 1.5 or 2 mM BaCl2 during retrograde perfusion with a 135 mM NaCl solution reduced the decrease of early proximal flow rate (VEP) by 2.7 +/- 0.76 (P < 0.02) and 4.2 +/- 0.8 nl/min (P < 0.01) compared with perfusion without BaCl2. Retrograde perfusion with 38 mM NaCl + 5 mM KCl reduced VEP by 10.4 +/- 1.3 nl/min, whereas 40 mM NaCl + 1.5 mM BaCl2 caused a reduction by only 6.1 +/- 1.4 nl/min (P < 0.001). In contrast to the inhibition caused by retrograde perfusion with low concentrations of BaCl2, increased vasoconstriction was seen during retrograde perfusion with 5 mM BaCl2 or during orthograde perfusion with 10 mM BaCl2. The addition of 10(-4) M furosemide to a solution containing 5 mM BaCl2 largely blocked the increased vasoconstrictor response. Peritubular perfusion with a solution containing 5 mM BaCl2 caused a fall in stop-flow pressure in an adjacent nephron by 10.7 +/- 1.5 mmHg (P < 0.001). These results indicate that under our experimental conditions Ba ions exert a dual effect on vascular responses to changes in luminal NaCl concentration.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document