scholarly journals Upregulation of ETV2 Expression Promotes Endothelial Differentiation of Human Dental Pulp Stem Cells

2021 ◽  
Vol 30 ◽  
pp. 096368972097873
Author(s):  
Jing Li ◽  
Youming Zhu ◽  
Na Li ◽  
Tao Wu ◽  
Xianyu Zheng ◽  
...  

The lack of vasculogenesis often hampers the survivability and integration of newly engineered tissue grafts within the host. Autologous endothelial cells (ECs) are an ideal cell source for neovascularization, but they are limited by their scarcity, lack of proliferative capacity, and donor site morbidity upon isolation. The objective of this study was to determine whether differentiation of human dental pulp stem cells (DPSCs) into the endothelial lineage can be enhanced by recombinant ETV2 overexpression. DPSCs were extracted from fresh dental pulp tissues. ETV2 overexpression in DPSCs was achieved by lentiviral infection and cellular morphological changes were evaluated. The mRNA and protein expression levels of endothelial-specific markers were assessed through quantitative real-time polymerase chain reaction, western blot, immunofluorescence staining, and flow cytometry. The tube formation assay and Matrigel plug assay were also performed to evaluate the angiogenic potential of the ETV2-transduced cells in vitro and in vivo, respectively. Additionally, proteomic analysis was performed to analyze global changes in protein expression following ETV2 overexpression. After lentiviral infection, ETV2-overexpressing DPSCs showed endothelial-like morphology. Compared with control DPSCs, significantly higher mRNA and protein expression levels of endothelial-specific genes, including CD31, VE-Cadherin, VEGFR1, and VEGFR2, were detected in ETV2-overexpressing DPSCs. Moreover, ETV2 overexpression enhanced capillary-like tube formation on Matrigel in vitro, as well as neovascularization in vivo. In addition, comparative proteomic profiling showed that ETV2 overexpression upregulated the expression of vascular endothelial growth factor (VEGF) receptors, which was indicative of increased VEGF signaling. Taken together, our results indicate that ETV2 overexpression significantly enhanced the endothelial differentiation of DPSCs. Thus, this study shows that DPSCs can be a promising candidate cell source for tissue engineering applications.

2014 ◽  
Vol 13 (6) ◽  
pp. 520-528 ◽  
Author(s):  
Jinyan Zhao ◽  
Wei Lin ◽  
Qunchuan Zhuang ◽  
Xiaoyong Zhong ◽  
Zhiyun Cao ◽  
...  

Total alkaloids is an active ingredient of the natural plant Rubus alceifolius Poir, commonly used for the treatment of various cancers. Antitumor effects may be mediated through anti-angiogenic mechanisms. As such, the goal of the present study was to investigate and evaluate the effect of total alkaloids in Rubus alceifolius Poir (TARAP) on tumor angiogenesis and investigate the underlying molecular mechanisms of TARAP action in vivo and in vitro. A chick embryo chorioallantoic membrane (CAM) assay was used to assess angiogenesis in vivo. An MTT assay was performed to determine the viability of human umbilical vein endothelial cells (HUVECs) with and without treatment. Cell cycle progression of HUVECs was examined by FACS analysis with propidium iodide staining. HUVEC migration was determined using a scratch wound method. Tube formation of HUVECs was assessed with an ECMatrix gel system, and mRNA and protein expression of VEGF-A in both HUVECs and HepG2 human hepatocellular carcinoma cells were examined by RT-PCR and ELISA, respectively. Our results showed that TARAP inhibited angiogenesis in the CAM model in vivo and inhibited HUVEC proliferation via blocking cell cycle G1 to S progression in a dose- and time-dependent manners in vitro. Moreover, TARAP inhibited HUVEC migration and tube formation and downregulated mRNA and protein expression of VEGF-A in both HepG2 cells and HUVECs. Our findings suggest that the anti-angiogenic activity of TARAP may partly contribute to its antitumor properties and may be valuable for the treatment of diseases involving pathologic angiogenesis such as cancer.


Rheumatology ◽  
2019 ◽  
Vol 59 (9) ◽  
pp. 2258-2263 ◽  
Author(s):  
Tiago Carvalheiro ◽  
Beatriz Malvar Fernández ◽  
Andrea Ottria ◽  
Barbara Giovannone ◽  
Wioleta Marut ◽  
...  

Abstract Objectives SSc is an autoimmune disease characterized by inflammation, vascular injury and excessive fibrosis in multiple organs. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that regulates processes involved in SSc pathology, such as inflammation and fibrosis. In vivo and in vitro studies have implicated SPARC in SSc, but it is unclear if the pro-fibrotic effects of SPARC on fibroblasts are a result of intracellular signalling or fibroblast interactions with extracellular SPARC hampering further development of SPARC as a potential therapeutic target. This study aimed to analyse the potential role of exogenous SPARC as a regulator of fibrosis in SSc. Methods Dermal fibroblasts from both healthy controls and SSc patients were stimulated with SPARC alone or in combination with TGF-β1, in the absence or presence of a TGF receptor 1 inhibitor. mRNA and protein expression of extracellular matrix components and other fibrosis-related mediators were measured by quantitative PCR and western blot. Results Exogenous SPARC induced mRNA and protein expression of collagen I, collagen IV, fibronectin 1, TGF-β and SPARC by dermal fibroblasts from SSc patients, but not from healthy controls. Importantly, exogenous SPARC induced the activation of the tyrosine kinase SMAD2 and pro-fibrotic gene expression induced by SPARC in SSc fibroblasts was abrogated by inhibition of TGF-β signalling. Conclusion These results indicate that exogenous SPARC is an important pro-fibrotic mediator contributing to the pathology driving SSc but in a TGF-β dependent manner. Therefore, SPARC could be a promising therapeutic target for reducing fibrosis in SSc patients, even in late states of the disease.


2020 ◽  
Vol 5 (3) ◽  
pp. 65 ◽  
Author(s):  
Giovanna Vermiglio ◽  
Antonio Centofanti ◽  
Giovanni Matarese ◽  
Angela Militi ◽  
Marco Matarese ◽  
...  

The orthodontic tooth movement is the last step of several biological processes that take place after the application of external forces. During this process, dental pulp tissue is subjected to structural and protein expression modifications in order to maintain their integrity and functional morphology. The purpose of the present work was to perform an in vivo study, evaluating protein expression modifications in the human dental pulp of patients that have undergone orthodontic tooth movement due to pre-calibrated light force application for 30 days. Dental pulp samples were extracted from molars and premolars of the control group and after 7 and 30 days of treatment; the samples were then processed for immunofluorescence reactions using antibodies against fibronectin, collagen I and vascular endothelial growth factor (VEGF). Our results show that, after 7 days of treatment, all tested proteins change their pattern expression and will reset after 30 days. These data demonstrate that the dental pulp does not involve any irreversible iatrogenic alterations, supporting the efficacy and safety of using pre-calibrated force application to induce orthodontic tooth movement in clinical practice.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ching-Yuan Wu ◽  
Yu-Shih Lin ◽  
Yao-Hsu Yang ◽  
Li-Hsin Shu ◽  
Yu-Ching Cheng ◽  
...  

Outbreak of coronavirus disease 2019 occurred in Wuhan and has rapidly spread to almost all parts of world. GB-1, the herbal formula from Tian Shang Sheng Mu of Chiayi Puzi Peitian Temple, is used for the prophylaxis of SARS-CoV-2 in Taiwan. In this study, we investigated that the effect of GB-1 and the index compounds of GB-1 on the ACE2 and TMPRSS2 expression through in vitro and in vivo study. In our result, GB-1 can inhibit ACE2 and TMPRSS2 protein expression in HepG2 cells, 293T cells, and Caco-2 cells without cytotoxicity. For the mouse model, GB-1 treatment could decrease ACE2 and TMPRSS2 expression levels of the lung and kidney tissue without adverse effects, including nephrotoxicity and hepatotoxicity. In the compositions of GB-1, 0.5–1 mg/ml of Glycyrrhiza uralensis Fisch. ex DC. extract could not inhibit ACE2 mRNA and protein expression in HepG2 cells. In addition, theaflavin-3-gallate could inhibit protein expression of ACE2 and TMPRSS2 without significant cytotoxicity. Our results suggest that GB-1 and theaflavin-3-gallate could act as potential candidates for prophylaxis or treatment of SARS-CoV-2 infection through inhibiting protein expression of ACE2 and TMPRSS2 for the further study.


2019 ◽  
Vol 52 (6) ◽  
Author(s):  
Alessio Zordani ◽  
Alessandra Pisciotta ◽  
Laura Bertoni ◽  
Giulia Bertani ◽  
Antonio Vallarola ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Liang Ma ◽  
Ming-wei Li ◽  
Yu Bai ◽  
Hui-hui Guo ◽  
Sheng-chao Wang ◽  
...  

Tracking transplanted stem cells is necessary to clarify cellular properties and improve transplantation success. In this study, we investigate the effects of fluorescent superparamagnetic iron oxide particles (SPIO) (Molday ION Rhodamine-B™, MIRB) on biological properties of human dental pulp stem cells (hDPSCs) and monitor hDPSCs in vitro and in vivo using magnetic resonance imaging (MRI). Morphological analysis showed that intracellular MIRB particles were distributed in the cytoplasm surrounding the nuclei of hDPSCs. 12.5–100 μg/mL MIRB all resulted in 100% labeling efficiency. MTT showed that 12.5–50 μg/mL MIRB could promote cell proliferation and MIRB over 100 μg/mL exhibited toxic effect on hDPSCs. In vitro MRI showed that 1 × 106cells labeled with various concentrations of MIRB (12.5–100 μg/mL) could be visualized. In vivo MRI showed that transplanted cells could be clearly visualized up to 60 days after transplantation. These results suggest that 12.5–50 μg/mL MIRB is a safe range for labeling hDPSCs. MIRB labeled hDPSCs cell can be visualized by MRI in vitro and in vivo. These data demonstrate that MIRB is a promising candidate for hDPSCs tracking in hDPSCs based dental pulp regeneration therapy.


2000 ◽  
Vol 74 (3) ◽  
pp. S194-S195
Author(s):  
S.J Yoon ◽  
C.S Shin ◽  
K.-H Baek ◽  
J.J Ko ◽  
N.Y Yoon ◽  
...  

2016 ◽  
Vol 232 (3) ◽  
pp. 548-555 ◽  
Author(s):  
Manuela Monti ◽  
Antonio Graziano ◽  
Silvana Rizzo ◽  
Cesare Perotti ◽  
Claudia Del Fante ◽  
...  

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 419.2-419
Author(s):  
J. Avouac ◽  
A. Steelandt ◽  
O. Amiar ◽  
A. Leblond ◽  
A. Cauvet ◽  
...  

Background:We have previously shown that decreased expression of the deacetylase sirtuin-1 (SIRT1) contributes to the proliferative, activated and proangiogenic profile of endothelial cells (EC) in rheumatoid arthritis (RA) (1). The matricellular protein CCN1, characterized by proangiogenic and immunomodulatory properties, may be directly implicated in these processes, since its expression is negatively regulated by SIRT1 (1).Objectives:To study the implication of CCN1 in RA pathogenesis.Methods:CCN1 expression was assessed in ECs (25 RA and 10 controls) by quantitative RT-PCR, western blot and ELISA, in the synovial tissue (5 RA and 5 controls) by immunohistochemistry and immunofluorescence, and in the serum (205 RA and 20 controls) by ELISA. Invalidation of CCN1 in RA ECs was achieved through the use of shRNA and neutralizing monoclonal antibodies. The functional consequences of CCN1 invalidation in RA ECs were studied i) in vitro by the analysis of proliferation (cell impedance), tube formation in Matrigel and migration in Boyden chambers; and ii) in vivo in the murine model of tumor neoangiogenesis.Results:CCN1 mRNA and protein expression were increased by 1.72- (p = 0.012) and 7.2-fold (p=0.008) in RA ECs compared to controls, respectively. CCN1 concentrations were significantly increased in RA EC culture supernatants (930±153 vs. 359±199 pg/mL, p=0.007). CCN1 was overexpressed in the synovial tissue of RA patients (Figure 1A) and confocal microscopy analyses revealed a prominent CCN1 expression in the vascular endothelium (CD31 +) and T cells (CD3 +) (Figure 1B).In vitro, recombinant TNF-α and IL-17 induced the mRNA and protein expression of CCN1 in RA ECs. CCN1 invalidation was associated with reduced proliferative capacities, delayed capillary tube formation and decreased migration of RA ECs (Figure 1E). In vivo, subcutaneous transplantation of CT26 tumor cells combined with RA ECs transfected with CCN1 shRNA to CB17 SCID mice was associated with a 51% reduction in tumor volume (p=0.008) and a 27% reduction in tumoral vascular density (p=0.032) compared with mice transplanted with MOCK transfected RA-ECs (Figure 1F).Serum concentrations of CCN1 were significantly reduced in the serum of RA patients compared to controls (233±118 vs. 279±75 pg/mL, p=0.045) (Figure 1C). However, serum CCN1 concentrations were significantly higher in the presence of bone erosions (253±139 vs. 202±7 pg/mL, p=0.002) (Figure 1D) and correlated with radiographic Larsen score (r=0.3, p=0.001) and HAQ (r=0.25, p=0.012).Conclusion:CCN1 is overexpressed in ECs and the synovial tissue of patients with RA. CCN1 also regulate the functional properties of RA ECs and their angiogenic potential in vivo. CCN1 could represent a new therapeutic target, which is being evaluated in experimental models of erosive arthritis.CCN1 may be a reliable biomarker of structural damages given the association between its serum concentrations and the extent of radiographic lesions. The performance of CCN1 serum levels to predict structural progression is under investigation.References:[1]Leblond et a, Ann Rheum Dis 2020.Figure 1.Implication of CCN1 in the pathogenesis of rheumatoid arthritis (RA). A, Representative immunohistochemistry staining for CCN1. B, Representative confocal microscopy analyses. C-D, CCN1 serum concentrations; statistical test: Student t test, ** p<0.01. E, Representative images of RA endothelial cell (EC) migration; Y-axis shows the number of migrated cells, statistical test: Wilcoxon test, * p<0.05. F, Representative subcutaneous tumors, Y-axis shows the fluorescence area in %, statistical test: Wilcoxon test, * p<0.05.Disclosure of Interests:None declared


Sign in / Sign up

Export Citation Format

Share Document