scholarly journals Extracellular ATP inhibits transport in medullary thick ascending limbs: role of P2X receptors

2009 ◽  
Vol 297 (5) ◽  
pp. F1168-F1173 ◽  
Author(s):  
Guillermo B. Silva ◽  
Jeffrey L. Garvin

Absorption of NaCl by the thick ascending limb (TAL) involves active transport and therefore depends on oxidative phosphorylation. Extracellular ATP has pleiotropic effects, including both stimulation and inhibition of transport and inhibition of oxidative phosphorylation. However, it is unclear whether ATP alters TAL transport and how this occurs. We hypothesized that ATP inhibits TAL Na absorption by reducing Na entry. We measured oxygen consumption in TAL suspensions. ATP reduced oxygen consumption in a concentration-dependent manner. The purinergic (P2) receptor antagonist suramin (300 μM) blocked the effect of ATP on TAL oxygen consumption (147 ± 15 vs. 146 ± 16 nmol O2·min−1·mg protein−1). In contrast, the adenosine receptor antagonist theophylline did not block the effect of ATP on oxygen consumption. When Na-K-2Cl cotransport and Na/H exchange were blocked with furosemide (100 μM) plus dimethyl amiloride (100 μM), ATP did not inhibit TAL oxygen consumption (from 78 ± 13 to 98 ± 5 nmol O2·min−1·mg protein−1). The Na ionophore nystatin (200 U/ml) increased TAL oxygen consumption to a similar extent in both ATP- and vehicle-treated samples (368 ± 41 vs. 397 ± 47 nmol O2·min−1·mg protein−1). The nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester (3 mM) blocked the ATP effects on TAL oxygen consumption (157 ± 10 vs. 165 ± 15 nmol O2·min−1·mg protein−1). The P2X-selective receptor antagonist NF023 blocked the effect of ATP on oxygen consumption, whereas the P2X-selective agonist β-γ-Me-ATP reduced oxygen consumption in a concentration-dependent manner. We conclude that ATP inhibits Na transport-related oxygen consumption in TALs by reducing Na entry and P2X receptors and nitric oxide mediate this effect.

1996 ◽  
Vol 1 (3) ◽  
pp. 203-209 ◽  
Author(s):  
Roberto Pedrinelli

Background To investigate the effects of dipyridamole, a drug with phosphodiesterase-, adenosine reuptake-inhibiting, and prostacyclin-stimulating activity on the biological actions of nitric oxide, 30 norepinephrine-precontracted subcutaneous arterioles were prepared from specimens removed during surgery. Methods and Results Specimens were mounted on a myograph and relaxed through either acetylcholine, a muscarinic agonist that stimulates endothelial nitric oxide production, or sodium nitroprusside, an endothelium-independent vasodilator. Studies were performed under control conditions and after dipyridamole which potentiated in a concentration-dependent manner the vasorelaxation induced both by acetylcholine and sodium nitroprusside, indicating an endothelium-independent mechanism of action. The contribution of nitric oxide to the relaxation produced by acetylcholine was confirmed by N-monomethyl-L-arginine, a nitric oxide synthase inhibitor. In contrast, indomethacin, a cyclo-oxygenase inhibitor, was ineffective, indicating that prostacyclin stimulation could not explain the effect of dipyridamole. CGS 21680 C, an A2-selective adenosine receptor agonist insensitive to tissue deaminase, did not influence the relaxations induced by acetylcholine, suggesting that interference with adenosine metabolism was not implicated in the potentiating action of dipyridamole. Conclusion Dipyridamole potentiated the vasorelaxing effect of acetylcholine and sodium nitroprusside in human subcutaneous arterioles; neither prostacyclin stimulation nor A2 adenosine receptor stimulation could explain this effect. The data are consistent with an increase in intracellular cyclic 3’ 5'-guanosine monophosphate levels secondary to the phosphodiesterase-inhibiting properties of the drug.


2011 ◽  
Vol 301 (3) ◽  
pp. H803-H812 ◽  
Author(s):  
Anne R. Diers ◽  
Katarzyna A. Broniowska ◽  
Victor M. Darley-Usmar ◽  
Neil Hogg

S-nitrosation of thiols in key proteins in cell signaling pathways is thought to be an important contributor to nitric oxide (NO)-dependent control of vascular (patho)physiology. Multiple metabolic enzymes are targets of both NO and S-nitrosation, including those involved in glycolysis and oxidative phosphorylation. Thus it is important to understand how these metabolic pathways are integrated by NO-dependent mechanisms. Here, we compared the effects of NO and S-nitrosation on both glycolysis and oxidative phosphorylation in bovine aortic endothelial cells using extracellular flux technology to determine common and unique points of regulation. The compound S-nitroso-l-cysteine (l-CysNO) was used to initiate intracellular S-nitrosation since it is transported into cells and results in stable S-nitrosation in vitro. Its effects were compared with the NO donor DetaNONOate (DetaNO). DetaNO treatment caused only a decrease in the reserve respiratory capacity; however, l-CysNO impaired both this parameter and basal respiration in a concentration-dependent manner. In addition, DetaNO stimulated extracellular acidification rate (ECAR), a surrogate marker of glycolysis, whereas l-CysNO stimulated ECAR at low concentrations and inhibited it at higher concentrations. Moreover, a temporal relationship between NO- and S-nitrosation-mediated effects on metabolism was identified, whereby NO caused a rapid impairment in mitochondrial function, which was eventually overwhelmed by S-nitrosation-dependent processes. Taken together, these results suggest that severe pharmacological nitrosative stress may differentially regulate metabolic pathways through both intracellular S-nitrosation and NO-dependent mechanisms. Moreover, these data provide insight into the role of NO and related compounds in vascular (patho)physiology.


2013 ◽  
Vol 304 (4) ◽  
pp. F376-F381 ◽  
Author(s):  
Guillermo B. Silva ◽  
Douglas K. Atchison ◽  
Luis I. Juncos ◽  
Néstor H. García

The energy required for active Na chloride reabsorption in the thick ascending limb (TAL) depends on oxygen consumption and oxidative phosphorylation (OXP). In other cells, Na transport is inhibited by the endogenous cannabinoid anandamide through the activation of the cannabinoid receptors (CB) type 1 and 2. However, it is unclear whether anandamide alters TAL transport and the mechanisms that could be involved. We hypothesized that anandamide inhibits TAL transport via activation of CB1 receptors and NO. For this, we measured oxygen consumption (QO2) in TAL suspensions to monitor the anandamide effects on transport and OXP. Anandamide reduced QO2 in a concentration-dependent manner. During Na-K-2Cl cotransport and Na/H exchange inhibition, anandamide did not inhibit TAL QO2. To test the role of the cannabinoid receptors, we used specific agonists and antagonists of CB1 and CB2 receptors. The CB1-selective agonist WIN55212–2 reduced QO2 in a concentration-dependent manner. Also, the CB1 receptor antagonist rimonabant blocked the effect of anandamide on QO2. In contrast, the CB2-selective agonist JHW-133 had no effect on QO2, while the CB2 receptor antagonist AM-630 failed to block the anandamide effects on QO2. To confirm these results, we measured CB1 and CB2 receptor expression and only CB1 expression was detected. Because CB1 receptors are strong nitric oxide synthase (NOS) stimulators and NO inhibits transport in TALs, we evaluated the role of NO. Anandamide stimulated NO production and the NOS inhibitor NG-nitro-l-arginine methyl ester blocked the anandamide effects on QO2. We conclude that anandamide inhibits TAL Na transport-related QO2 via activation of CB1 receptor and NOS.


2004 ◽  
Vol 286 (5) ◽  
pp. H1910-H1915 ◽  
Author(s):  
Sergey V. Brodsky ◽  
Fan Zhang ◽  
Alberto Nasjletti ◽  
Michael S. Goligorsky

Endothelial cell dysfunction (ECD) is emerging as the common denominator for diverse and highly prevalent cardiovascular diseases. Recently, an increased number of procoagulant circulating endothelial microparticles (EMPs) has been identified in patients with acute myocardial ischemia, preeclampsia, and diabetes, which suggests that these particles represent a surrogate marker of ECD. Our previous studies showed procoagulant potential of endothelial microparticles and mobilization of microparticles by PAI-1. The aim of this study was to test the effects of isolated EMPs on the vascular endothelium. EMPs impaired ACh-induced vasorelaxation and nitric oxide production by aortic rings obtained from Sprague-Dawley rats in a concentration-dependent manner. This effect was accompanied by increased superoxide production by aortic rings and cultured endothelial cells that were coincubated with EMPs and was inhibited by a SOD mimetic and blunted by an endothelial nitric oxide synthase inhibitor. Superoxide was also produced by isolated EMP. In addition, p22(phox) subunit of NADPH-oxidase was detected in EMP. Our data strongly suggest that circulating EMPs directly affect the endothelium and thus not only act as a marker for ECD but also aggravate preexisting ECD.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Lais Moraes de Oliveira ◽  
Aline Gabriela Rodrigues ◽  
Elaine Fernanda da Silva ◽  
Letícia Bonancio Cerqueira ◽  
Carlos Henrique Castro ◽  
...  

Caryocar brasilienseCamb. “pequi” is a native plant from the Cerrado region of Brazil that contains bioactive components reported to be antioxidant agents. Previous work has demonstrated that dietary supplementation with pequi decreased the arterial pressure of volunteer athletes. We found that the crude hydroalcoholic extract (CHE) ofC. brasilienseleaves relaxed, in a concentration-dependent manner, rat aortic rings precontracted with phenylephrine, and that the butanolic fraction (BF) produced an effect similar to that of the CHE. Aortic relaxation induced by BF was abolished by endothelium removal, by incubation of the nitric oxide synthase inhibitor L-NAME, or the soluble guanylatecyclase inhibitor ODQ. However, incubation with atropine and pyrilamine had no effect on the BF-induced vasorelaxation. Moreover, this effect was not inhibited by indomethacin and tetraethylammonium. The concentration-response curve to calcium in denuded-endothelium rings was not modified after incubation with BF, and the vasorelaxation by BF in endothelium-intact rings precontracted with KCl was abolished after incubation with L-NAME. In addition, administration of BF in anesthetized rats resulted in a reversible hypotension. The results reveal thatC. brasiliensepossesses both in vivo and in vitro activities and that the vascular effect of BF involves stimulation of the nitric oxide/cyclic GMP pathway.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Sang Keun Ha ◽  
Ho-Young Park ◽  
Mee-Ra Ryu ◽  
Yoonsook Kim ◽  
Yongkon Park

The vasorelaxant effects of dealcoholized wild grape (Vitis coignetiae) wine were investigated with isolated rat thoracic aorta. In our present study, we demonstrate that wild grape wine powder (WGWP) induced relaxation of aortic rings preconstricted with norepinephrine in a dose-dependent manner (at concentrations ranging from 0.1 to 1 mg/mL). The vasorelaxant effect of WGWP was dependent on intact endothelia, which was attenuated by incubation with inhibitors of endothelium-derived relaxing factors, such asNG-nitro-L-arginine (nitric oxide synthase inhibitor), methylene blue (guanylate cyclase inhibitor), and indomethacin (cyclooxygenase inhibitor). Moreover, treatment with WGWP and atropine (muscarinic receptor antagonist) or diphenylhydramine (histamine receptor antagonist) significantly inhibited endothelium-dependent vasorelaxation. Our results suggest that WGWP induces relaxation in rat aortic rings in an endothelium-dependent manner. Results further indicate that this effect occurs via nitric oxide-cGMP pathway and prostacyclin-cAMP pathway through a muscarinic receptor and histamine receptor.


2001 ◽  
Vol 281 (1) ◽  
pp. H191-H197 ◽  
Author(s):  
Huiping Liu ◽  
Bradley C. McPherson ◽  
Xiangdong Zhu ◽  
Mark L. A. Da Costa ◽  
Valluvan Jeevanandam ◽  
...  

We examined the roles of nitric oxide and protein kinase C (PKC) in ACh-produced protection of cultured cardiomyocytes during simulated ischemia and reoxygenation. Cell viability was quantified using propidium iodide in chick embryonic ventricular myocytes. O2 radicals were quantified using 2′,7′-dichlorofluorescin diacetate. After a 10-min infusion of ACh (0.5 or 1 mM) and a 10-min drug-free period, we simulated ischemia for 1 h and reoxygenation for 3 h. ACh reduced cardiocyte death [32 ± 4%; n = 6 and 23 ± 4%; n = 7 ( P < 0.05)] and attenuated oxidant stress during ischemia and reoxygenation in a concentration-dependent manner compared with controls (47 ± 4%; n = 8; P < 0.05). The increase in O2 radicals before simulated ischemia [357 ± 49; n = 4 and 528 ± 52; n = 8 vs. 211 ± 34; n = 8; P < 0.05 (arbitrary units)] was abolished by the specific nitric oxide synthase inhibitor N G-nitro-l-arginine methyl ester (l-NAME) and was markedly attenuated by N G-monomethyl-l-arginine (l-NMMA). l-NAME or l-NMMA blocked the protective effects of ACh, which selectively increased PKC-ε isoform activity in the particulate fraction. The PKC inhibitor Gö-6976 had no effect on O2 radical production before simulated ischemia but it abolished the protection; therefore nitric oxide is a large component of ACh-generated O2radicals. Nitric oxide and O2 radicals activate the PKC-ε isoform by which ACh protects against injury.


2017 ◽  
Vol 43 (5) ◽  
pp. 2088-2101 ◽  
Author(s):  
Yuan Zong ◽  
Xujiao Zhou ◽  
Jingyi Cheng ◽  
Jian Yu ◽  
Jihong Wu ◽  
...  

Background/Aims: Cannabinoids are vasoactive substances that act as key regulators of arterial tone in the blood vessels supplying peripheral tissues and the central nervous system. We therefore investigated the effect of cannabinoids on retinal capillaries and pericytes. Methods: The effects of cannabinoids on capillary diameters were determined using an ex vivo whole-mount rat retinal model. Western blotting, quantitative PCR, and immunohistochemistry were performed to explore the underlying mechanism. Results: Endogenous cannabinoid 2-arachidonoylglycerol and anandamide and exogenous cannabinoid (R-(+)-WIN55212-2) dilated the noradrenaline-precontracted capillaries in a concentration-dependent manner (1 µM to 0.1 mM). The extent of vasorelaxation was positively correlated with changes in pericyte width. The effects of R-(+)-WIN55212-2 on vasorelaxation and pericyte width were inhibited by a cannabinoid receptor type-1 (CB1) antagonist, AM251 or rimonabant (SR141716A), the nitric oxide synthase inhibitor l-NAME, and the guanylate cyclase inhibitor ODQ. They were also abolished by the removal of the endothelium, but not by the cannabinoid receptor-2 antagonist SR144528, the endothelial cannabinoid receptor antagonist O-1918, or the cyclooxygenase inhibitor indomethacin. Conclusion: The exogenous cannabinoid R-(+)-WIN55212-2 promotes the vasorelaxation of pericyte-containing rat retinal capillaries. This effect of R-(+)-WIN55212-2 is dependent on CB1 and the nitric oxide–cyclic guanosine monophosphate pathway, and requires an intact endothelium.


1998 ◽  
Vol 274 (1) ◽  
pp. C245-C252 ◽  
Author(s):  
Junsuke Igarashi ◽  
Masashi Nishida ◽  
Shiro Hoshida ◽  
Nobushige Yamashita ◽  
Hiroaki Kosaka ◽  
...  

The effects of nitric oxide (NO) produced by cardiac inducible NO synthase (iNOS) on myocardial injury after oxidative stress were examined. Interleukin-1β induced cultured rat neonatal cardiac myocytes to express iNOS. After induction of iNOS,l-arginine enhanced NO production in a concentration-dependent manner. Glutathione peroxidase (GPX) activity in myocytes was attenuated by elevated iNOS activity and by an NO donor, S-nitroso- N-acetyl-penicillamine (SNAP). Although NO production by iNOS did not induce myocardial injury, NO augmented release of lactate dehydrogenase from myocyte cultures after addition of H2O2(0.1 mM, 1 h). Inhibition of iNOS with Nω-nitro-l-arginine methyl ester ameliorated the effects of NO-enhancing treatments on myocardial injury and GPX activity. SNAP augmented the myocardial injury induced by H2O2. Inhibition of GPX activity with antisense oligodeoxyribonucleotide for GPX mRNA increased myocardial injury by H2O2. Results suggest that the induction of cardiac iNOS promotes myocardial injury due to oxidative stress via inactivation of the intrinsic antioxidant enzyme, GPX.


2004 ◽  
Vol 287 (2) ◽  
pp. F231-F235 ◽  
Author(s):  
Marcela Herrera ◽  
Jeffrey L. Garvin

Endothelin-1 (ET-1) acutely inhibits NaCl reabsorption by the thick ascending limb (THAL) by activating the ETB receptor, stimulating endothelial nitric oxide synthase (eNOS), and releasing nitric oxide (NO). In nonrenal tissue, chronic exposure to ET-1 stimulates eNOS expression via the ETB receptor and activation of phosphatidylinositol 3-kinase (PI3K). We hypothesized that ET-1 increases eNOS expression in the THAL by binding to ETB receptors and stimulating PI3K. In primary cultures of medullary THALs treated for 24 h, eNOS expression increased by 36 ± 18% with 0.01 nM ET-1, 123 ± 30% with 0.1 nM ( P < 0.05; n = 5), and 71 ± 30% with 1 nM, whereas 10 nM had no effect. BQ-788, a selective ETB receptor antagonist, completely blocked stimulation of eNOS expression caused by 0.1 nM ET-1 (12 ± 25 vs. 120 ± 40% for ET-1 alone; P < 0.05; n = 5). BQ-123, a selective ETA receptor antagonist, did not affect the increase in eNOS caused by 0.1 nM ET-1. Sarafotoxin c (S6c; 0.1 μM), a selective ETB receptor agonist, increased eNOS expression by 77 ± 30% ( P < 0.05; n = 6). Wortmannin (0.01 μM), a PI3K inhibitor, completely blocked the stimulatory effect of 0.1 μM S6c (77 ± 30 vs. −28 ± 9%; P < 0.05; n = 6). To test whether the increase in eNOS expression heightens activity, we measured NO release in response to simultaneous treatment with l-arginine, ionomycin, and clonidine using a NO-sensitive electrode. NO release by control cells was 337 ± 61 and 690 ± 126 pA in ET-1-treated cells ( P < 0.05; n = 5). Taken together, these data suggest that ET-1 stimulates THAL eNOS, activating ETB receptors and PI3K and thereby increasing NO production.


Sign in / Sign up

Export Citation Format

Share Document