Determination of liver intracellular pH in vivo and its homeostasis in acute acidosis and alkalosis

1979 ◽  
Vol 236 (3) ◽  
pp. F240-F245 ◽  
Author(s):  
R. Park ◽  
W. J. Leach ◽  
A. I. Arieff

An in vivo method is presented for the determination of liver intracellular pH (pHi) using [14C]dimethadione (DMO) in dogs. This method differs from those previously published in that hepatic venous and portal venous blood pH were selected as the extracellular reference pH, and liver blood space corrections are applied to whole liver tissue [14C]DMO activity. Using these corrections, a normal liver pHi of 6.99 +/- 0.03 (SE) was obtained. During acute metabolic acidosis and alkalosis, as well as during acute respiratory acidosis and alkalosis, the liver pHi remained normal; metabolic acidosis was 7.04 +/- 0.04; metabolic alkalosis was 6.92 +/- 0.08; respiratory acidosis was 6.98 +/- 0.04; and respiratory alkalosis was 7.00 +/- 0.10. None of these values was significantly different from normal (P greater than 0.05). Changes in intracellular bicarbonate and lactate appeared to account in part for the observed stability of the liver pHi despite acute manipulations resulting in a range of pH values between 7.09 and 7.63 in arterial blood.

1986 ◽  
Vol 251 (5) ◽  
pp. F904-F910 ◽  
Author(s):  
W. R. Adam ◽  
A. P. Koretsky ◽  
M. W. Weiner

Renal intracellular pH (pHi) was measured in vivo from the chemical shift (sigma) of inorganic phosphate (Pi), obtained by 31P-nuclear magnetic resonance spectroscopy (NMR). pH was calculated from the difference between sigma Pi and sigma alpha-ATP. Changes of sigma Pi closely correlated with changes of sigma monophosphoesters; this supports the hypothesis that the pH determined from sigma Pi represents pHi. Renal pH in control rats was 7.39 +/- 0.04 (n = 8). This is higher than pHi of muscle and brain in vivo, suggesting that renal Na-H antiporter activity raises renal pHi. To examine the relationship between renal pH and ammoniagenesis, rats were subjected to acute (less than 24 h) and chronic (4-7 days) metabolic acidosis, acute (20 min) and chronic (6-8 days) respiratory acidosis, and dietary potassium depletion (7-21 days). Acute metabolic and respiratory acidosis produced acidification of renal pHi. Chronic metabolic acidosis (arterial blood pH, 7.26 +/- 0.02) lowered renal pHi to 7.30 +/- 0.02, but chronic respiratory acidosis (arterial blood pH, 7.30 +/- 0.05) was not associated with renal acidosis (pH, 7.40 +/- 0.04). At a similar level of blood pH, pHi was higher in chronic metabolic acidosis than in acute metabolic acidosis, suggesting an adaptive process that raises pHi. Potassium depletion (arterial blood pH, 7.44 +/- 0.05) was associated with a marked renal acidosis (renal pH, 7.17 +/- 0.02). There was a direct relationship between renal pH and cardiac K+. Rapid partial repletion with KCl (1 mmol) significantly increased renal pHi from 7.14 +/- 0.03 to 7.31 +/- 0.01.(ABSTRACT TRUNCATED AT 250 WORDS)


1957 ◽  
Vol 3 (5) ◽  
pp. 631-637
Author(s):  
Herbert P Jacobi ◽  
Anthony J Barak ◽  
Meyer Beber

Abstract The Co2 combining power bears a variable relationship to the in vivo plasma bicarbonate concentration, depending upon the type and severity of acid-base distortion. In respiratory alkalosis and metabolic acidosis the Co2 combining power will usually be greater than the in vivo plasma bicarbonate concentration; whereas, in respiratory acidosis and metabolic alkalosis the Co2 combining power will usually be less. Co2 content, on the other hand, will always parallel the in vivo plasma bicarbonate concentration quite closely, being only slightly greater. These facts, together with other considerations which are discussed, recommend the abandonment of the determination of CO2 combining power.


Author(s):  
Jitendra Lakhani ◽  
Sajani Kapadia ◽  
Hetal Pandya ◽  
Roop Gill ◽  
Rohit Chordiya ◽  
...  

Background/Aims: The aim of present study was to find out profile and sequential pattern of Arterial Blood Gas (ABG) in critically ill Corona Virus Disease 2019 (COVID-19) patients. Study Design: Observational prospective study. Methodology: A total of 80 Reverse Transcription Polymerase Chain Reaction (RT PCR) positive cases; that needed ICU admission for their life-threatening conditions were included in this study done at teaching hospital of Gujarat, India. Non consenting patients and patients who could not be followed up as per protocol were excluded. Data of Arterial Blood Gas (ABG), performed on admission, day 5 and day 10 were taken for the analysis. Patients were followed up till they remained in ICU. Results: Of 80 patients, 3 patients had normal, 24 patients (30%) had primary disorder on ABG while 53 patients (66.25%) had mixed disorders. The most common ABG abnormality observed was respiratory alkalosis with metabolic acidosis in 16 patients (20%) while respiratory alkalosis with metabolic alkalosis in 15 patients (18.75%). There was difference in ABG pattern observed among survivors and non-survivors (P=.04); of which conspicuous was presence of “respiratory acidosis with metabolic acidosis” in 5 non-survivors (15.63%), which was not seen in survivors. Of 80 patients admitted in COVID ICU; 2 improved after day 1; 6 after day 5; 40 after day 10, making total of 48 patients surviving COVID critical condition. Of 32 non-survivors, 14 died within twenty-four hours of admission, 14 within first 5 days and 04 after 10 days of ICU stay. Conclusion: ABG done on admission and serially in severe COVID-19 patients gives useful information on underlying pathophysiology. Mixed ABG pattern was more common than single disorder which can be sign of multi-organ involvement.  Respiratory acidosis with metabolic acidosis was observed significantly higher in non-survivors. Respiratory alkalosis as a part of single or mixed pattern on ABG was the most common pattern found in critically ill COVID patients.


1986 ◽  
Vol 250 (6) ◽  
pp. F1039-F1045
Author(s):  
B. Trivedi ◽  
R. L. Tannen

In contrast to chronic metabolic acidosis, chronic respiratory acidosis does not result in an adaptation in either renal ammonia or glucose production. To examine the possibility that this might be explained by a difference in proximal tubule intracellular pH, the response of two pH-sensitive metabolites, citrate and alpha-ketoglutarate, were assessed. Metabolic acidosis of 3 days duration, induced by drinking 1.5% NH4Cl, significantly reduced urinary citrate excretion (172 to 15 mumol/day) and renal cortical citrate (1.33 to 0.88 mumol/g) and alpha-ketoglutarate (0.90 to 0.46 mumol/g) concentrations in comparison with normal rats. Chronic respiratory acidosis, produced by 3 days in a 10% CO2 environment, lowered systemic pH similar to metabolic acidosis but had no effect on either urinary citrate excretion or renal cortical citrate and alpha-ketoglutarate concentrations. By contrast, acute respiratory acidosis (3, 6, or 24 h duration) reduced urinary citrate excretion and renal cortical citrate and alpha-ketoglutarate concentrations in a fashion similar to acute metabolic acidosis. These data suggest that acute acidosis of either respiratory or metabolic origin lowers the intracellular pH of the proximal tubule. However, when the acid-base abnormality enters the chronic phase, proximal tubular intracellular pH remains low with metabolic acidosis but returns to normal values with respiratory acidosis.(ABSTRACT TRUNCATED AT 250 WORDS)


1989 ◽  
Vol 256 (5) ◽  
pp. F836-F842 ◽  
Author(s):  
D. A. Bushinsky

In vivo chronic metabolic acidosis induces bone mineral dissolution. Whether the dissolution is due to alterations in physicochemical factors alone, as in acute metabolic acidosis, or requires participation of bone cells is not clear. The effect of chronic respiratory acidosis on bone has also not been established. To determine the effects of chronic metabolic and respiratory acidosis on net calcium flux from bone, we cultured live and dead neonatal mouse calvariae for 99 h in control medium or in medium acidified (pH approximately equal to 7.1) either by lowering the bicarbonate concentration (Met) or by increasing the PCO2 (Resp). We measured net calcium flux (JCa) over 0-48, 48-96, and 96-99 h. Over the first 48 h, there was greater net calcium efflux from live and dead Met than from both Resp groups. All four acidic groups had greater net calcium efflux than controls. Over the last 51 h of the chronic 99 h culture, there was net calcium efflux only from live Met (JCa = 285 +/- 129 nmol.bone-1.3 h-1) and not from any of the other groups (live control, JCa = -183 +/- 24; live Resp, JCa = -110 +/- 22; dead control, JCa = -256 +/- 12; dead Met, JCa = 11 +/- 78; dead Resp, JCa = -27 +/- 47; each P less than 0.02 vs. live Met). There is net calcium efflux from live cultured neonatal mouse calvariae during chronic metabolic, but not respiratory, acidosis. During chronic acidosis, decreased medium bicarbonate, and not just a fall in pH, is necessary to enhance net calcium efflux from live bone.


1984 ◽  
Vol 247 (1) ◽  
pp. G24-G31 ◽  
Author(s):  
P. Kurtin ◽  
A. N. Charney

Acute respiratory alkalosis and acidosis alter rat ileal and colonic but not jejunal electrolyte transport. To examine the role of altered intracellular pH, pHi, and HCO3 concentration, (HCO3)i, we measured pHi in mucosa scraped from the jejunum, ileum, and colon of anesthetized, mechanically ventilated Sprague-Dawley rats. During states of respiratory alkalosis (Pco2 24.9 +/- 0.8 mmHg, pH 7.586 +/- 0.014), respiratory acidosis (Pco2 67.8 +/- 1.2 mmHg, pH 7.228 +/- 0.007), and normocapnia (Pco2 41.1 +/- 0.7 mmHg, pH 7.401 +/- 0.006), pHi was measured by determining the distribution of 5,5-dimethyl[2-14C]oxazolidine-2,4-dione, using [3H]inulin as a marker of extracellular space. (HCO3)i was calculated using portal vein Pco2. In the ileum, the pHi of 6.901 +/- 0.029 was similar in alkalosis [(HCO3)i 5.4 +/- 0.3 mM], acidosis [(HCO3)i 12.4 +/- 0.6 mM], and normocapnia [(HCO3)i 8.6 +/- 0.8 mM). In both the jejunum and colon, pHi was increased in alkalosis [pHi 6.998 +/- 0.038, (HCO3)i 6.7 +/- 0.6 mM] and decreased in acidosis [pHi 6.789 +/- 0.024, (HCO3)i 10.4 +/- 0.6 mM] as compared with normocapnia [pHi 6.915 +/- 0.026, (HCO3)i 8.9 +/- 0.7 mM] (colon data given). Net electrolyte transport measured by in vivo perfusion revealed that ileal and colonic, but not jejunal, net Na and Cl absorption was decreased during alkalosis and increased during acidosis. These data suggest that, during respiratory acidosis and alkalosis, pHi is maintained in a qualitatively similar way in the jejunum, ileum, and colon with quantitatively greater or lesser changes in (HCO3)i.(ABSTRACT TRUNCATED AT 250 WORDS)


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3827
Author(s):  
Gemma Urbanos ◽  
Alberto Martín ◽  
Guillermo Vázquez ◽  
Marta Villanueva ◽  
Manuel Villa ◽  
...  

Hyperspectral imaging techniques (HSI) do not require contact with patients and are non-ionizing as well as non-invasive. As a consequence, they have been extensively applied in the medical field. HSI is being combined with machine learning (ML) processes to obtain models to assist in diagnosis. In particular, the combination of these techniques has proven to be a reliable aid in the differentiation of healthy and tumor tissue during brain tumor surgery. ML algorithms such as support vector machine (SVM), random forest (RF) and convolutional neural networks (CNN) are used to make predictions and provide in-vivo visualizations that may assist neurosurgeons in being more precise, hence reducing damages to healthy tissue. In this work, thirteen in-vivo hyperspectral images from twelve different patients with high-grade gliomas (grade III and IV) have been selected to train SVM, RF and CNN classifiers. Five different classes have been defined during the experiments: healthy tissue, tumor, venous blood vessel, arterial blood vessel and dura mater. Overall accuracy (OACC) results vary from 60% to 95% depending on the training conditions. Finally, as far as the contribution of each band to the OACC is concerned, the results obtained in this work are 3.81 times greater than those reported in the literature.


1970 ◽  
Vol 33 (5) ◽  
pp. 498-505 ◽  
Author(s):  
R. Zupping

✓ Acid-base and gas parameters of CSF, jugular venous and arterial blood were measured in 45 patients with brain injury in the first 12 days after trauma or operation. CSF metabolic acidosis together with respiratory alkalosis and hypoxemia in the cerebral venous and arterial blood were the most characteristic findings. A close correlation between the severity of brain damage and the intensity of the CSF metabolic acidosis and arterial hypocapnia was revealed. It was concluded that brain hypoxia and acidosis play an important role in the development of cerebral edema and permanent brain damage.


1986 ◽  
Vol 250 (5) ◽  
pp. G588-G593 ◽  
Author(s):  
J. D. Wagner ◽  
P. Kurtin ◽  
A. N. Charney

We previously reported that changes in ileal net Na absorption correlated with arterial pH, changes in net HCO3 secretion correlated with the plasma HCO3 concentration, and changes in net Cl absorption correlated with arterial CO2 partial pressure (PCO2) during the systemic acid-base disorders. To determine whether changes in intracellular pH (pHi) and HCO3 concentration [( HCO3]i) mediated these effects, we measured pHi and calculated [HCO3]i in the distal ileal mucosa of anesthetized, mechanically ventilated Sprague-Dawley rats using 5,5-[14C]dimethyloxazolidine-2,4,-dione and [3H]inulin. Rats were studied during normocapnia, acute respiratory acidosis, and alkalosis, and uncompensated and pH-compensated acute metabolic acidosis and alkalosis. When animals in all groups were considered, mucosal pHi was not altered, but there were strong correlations between mucosal [HCO3]i and both arterial PCO2 (r = 0.97) and [HCO3] (r = 0.61). When we considered the rates of ileal electrolyte transport that characterized these acid-base disorders [A. N. Charney and L.P. Haskell, Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G230-G235, 1983], we found strong correlations between mucosal [HCO3]i and both net Cl absorption (r = 0.88) and net HCO3 secretion (r = 0.82). These findings suggest that the systemic acid-base disorders do not affect ileal mucosal pHi but do alter mucosal [HCO3]i as a consequence of altered arterial PCO2 and [HCO3]. The effects of these disorders on ileal net Cl absorption and HCO3 secretion may be mediated by changes in [HCO3]i. Arterial pH does not appear to alter ileal Na absorption through changes in the mucosal acid-base milieu.


1984 ◽  
Vol 56 (1) ◽  
pp. 109-116 ◽  
Author(s):  
R. M. Winslow ◽  
M. Samaja ◽  
J. B. West

As part of the American Medical Research Expedition to Everest in 1981, we measured hemoglobin concentration, red cell 2,3-diphosphoglycerate (2,3-DPG), Po2 at which hemoglobin is 50% saturated (P50), and acid-base status in expedition members at various altitudes. All measurements were made in expedition laboratories and, with the exception of samples from the South Col of Mt. Everest (8,050 m), within 2 h of blood collection. In vivo conditions were estimated from direct measurements of arterial blood gases and pH or inferred from base excess and alveolar PCO2. As expected, increased 2,3-DPG was associated with slightly increased P50, when expressed at pH 7.4. Because of respiratory alkalosis, however, the subjects' in vivo P50 at 6,300 m (27.6 Torr) was slightly less than at sea level (28.1 Torr). The estimated in vivo P50 was progressively lower at 8,050 m (24.9 Torr) and on the summit at 8,848 m (19.4 Torr in one subject). Our data suggest that, at extreme altitude, the blood O2 equilibrium curve shifts progressively leftward because of respiratory alkalosis. This left shift protects arterial O2 saturation at extreme altitude.


Sign in / Sign up

Export Citation Format

Share Document