Effects of pH on potassium transport by renal distal tubule

1982 ◽  
Vol 242 (5) ◽  
pp. F544-F551 ◽  
Author(s):  
B. A. Stanton ◽  
G. Giebisch

To determine the relative importance of plasma and luminal pH changes as factors regulating potassium secretion by rat distal tubule, superficial tubules were continuously microperfused in vivo. The effects of changes in plasma pH were examined by producing acute systemic metabolic acidosis or alkalosis and holding luminal flow rate, solute composition, and pH constant by microperfusion. Alternatively, the effect of luminal solution pH was evaluated by microperfusing tubules with solutions buffered to either pH 6.5 or 8.0 at constant systemic acid-base balance. Net transport of Na and K and the pH of the luminal fluid were measured. Results showed that metabolic acidosis inhibited and metabolic alkalosis stimulated potassium secretion. Increased luminal fluid pH, in contrast, did not stimulate potassium transport. In experiments in which metabolic acidosis produced a diuresis, urinary potassium excretion was enhanced compared with hydropenic controls. Free-flow micropuncture studies revealed that the rate of fluid delivery to the distal tubule was 45% greater during acidosis compared with control and that potassium secretion increased in both the distal and collecting tubule. Since the rate of fluid delivery is a potent stimulus of potassium secretion in the distal tubule, it is concluded that the stimulus of increased delivery of fluid, observed in free-flow conditions, masked the inhibitory effect of acidosis on potassium transport. Potassium transport by the distal tubule, during acid-base disorders, is regulated by plasma pH and the rate of delivery of fluid but is not stimulated by alkalinization of the luminal fluid.

1975 ◽  
Vol 229 (5) ◽  
pp. 1403-1409 ◽  
Author(s):  
HJ Reineck ◽  
RW Osgood ◽  
TF Ferris ◽  
JH Stein

Because of recent conflicting results, micropuncture studies were performed to clarify the respective role of the distal convoluted tubule and collecting duct in the regulation of urinary potassium excretion. Five groups of Sprague-Dawley rats were studied: group I, hydropenia (n = 10); group II, Ringer loading (n = 7); group III, acute KC1 loading (n = 6); group IV, mannitol diuresis (n = 6); group V, KC1 infusion during mannitol diuresis (n = 7). Early and late distal tubules were identified with intravenous injections of lissamine green. In each animal net secretion of potassium occurred along the distal convoluted tubule, and a direct relationship between distal tubular flow rate and potassium secretion was observed. The magnitude of potassium secretion at high distal tubular flow rates was dependent on the model studied. Potassium transport beyond the distal tubule was evaluated by comparing end distal potassium delivery and fractional potassium excretion. At low urinary flow rates net reabsorption was observed, whereas at higher flow rates no net transport occurred. Thus, flow rate along the collecting duct may be a major determinant of urinary potassium excretion.


1982 ◽  
Vol 243 (4) ◽  
pp. F335-F341 ◽  
Author(s):  
M. S. Lucci ◽  
L. R. Pucacco ◽  
N. W. Carter ◽  
T. D. DuBose

Previous micropuncture studies utilizing indirect methods to estimate bicarbonate transport in the rat superficial distal tubule have indicated that the distal bicarbonate reabsorptive process normally operates well below the saturation level. Recent studies from our laboratory failed to demonstrate a spontaneous acid disequilibrium pH in this segment, implying that the bicarbonate reabsorptive rate was less than previously estimated. The purpose of the present experiments were 1) to measure the rate of absolute bicarbonate reabsorption by the rat superficial distal tubule while controlling bicarbonate delivery, and 2) to examine the effects of alterations in acid-base status on the rate of bicarbonate reabsorption. Five groups of rats in different states of acid-base balance were studied. No significant bicarbonate reabsorption was detected in the control hydropenic, combined respiratory acidosis-metabolic alkalosis, acute respiratory acidosis, or acute metabolic acidosis groups. In contrast, metabolic acidosis of 3 days duration resulted in a significant bicarbonate reabsorptive rate of 52.6 +/- 13.9 pmol . mm-1 . min-1. The observation of significant bicarbonate reabsorption in the distal tubule only during chronic metabolic acidosis of 3 days duration is compatible with adaptation of this normally low-capacity segment to chronic changes in systemic acid-base states.


Author(s):  
Donaliazarti Donaliazarti ◽  
Rismawati Yaswir ◽  
Hanifah Maani ◽  
Efrida Efrida

Metabolic acidosis is prevalent among critically ill patients and the common cause of metabolic acidosis in ICU is lactic acidosis. However, not all ICUs can provide lactate measurement. The traditional method that uses Henderson-Hasselbach equation (completed with BE and AG) and alternative method consisting of Stewart and its modification (BDEgap and SIG), are acid-base balance parameters commonly used by clinicians to determine metabolic acidosis in critically ill patients. The objective of this study was to discover the association between acid-base parameters (BE, AGobserved, AGcalculated, SIG, BDEgap) with lactate level in critically ill patients with metabolic acidosis. This was an analytical study with a cross-sectional design. Eighty-four critically ill patients hospitalized in the ICU department Dr. M. Djamil Padang Hospital were recruited in this study from January to September 2016. Blood gas analysis and lactate measurement were performed by potentiometric and amperometric method while electrolytes and albumin measurement were done by ISE and colorimetric method (BCG). Linear regression analysis was used to evaluate the association between acid-base parameters with lactate level based on p-value less than 0.05. Fourty five (54%) were females and thirty-nine (46%) were males with participant’s ages ranged from 18 to 81 years old. Postoperative was the most reason for ICU admission (88%). Linear regression analysis showed that p-value for BE, AGobserved, AGcalculated, SIG and BDEgap were 119; 0.967; 0.001; 0.001; 0.689, respectively. Acid-base balance parameters which were mostly associated with lactate level in critically ill patients with metabolic acidosis were AGcalculated and SIG. 


2011 ◽  
Vol 139 (1-2) ◽  
pp. 37-43
Author(s):  
Natasa Stajic ◽  
Jovana Putnik ◽  
Aleksandra Paripovic ◽  
Radovan Bogdanovic

Introduction. Infants with urinary tract malformations (UTM) presenting with urinary tract infection (UTI) are prone to develop transient type 1 pseudohypoaldosteronism (THPA1). Objective. Report on patient series with characteristics of THPA1, UTM and/or UTI and suggestions for the diagnosis and therapy. Methods. Patients underwent blood and urine electrolyte and acid-base analysis, serum aldosterosterone levels and plasma rennin activity measuring; urinalysis, urinoculture and renal ultrasound were done and medical and/or surgical therapy was instituted. Results. Hyponatraemia (120.9?5.8 mmol/L), hyperkalaemia (6.9?0.9 mmol/L), metabolic acidosis (plasma bicarbonate, 11?1.4 mmol/L), and a rise in serum creatinine levels (145?101 ?mol/L) were associated with inappropriately high urinary sodium (51.3?17.5 mmol/L) and low potassium (14.1?5.9 mmol/L) excretion. Elevated plasma aldosterone concentrations (170.4?100.5 ng/dL) and the very high levels of the plasma aldosterone to potassium ratio (25.2?15.6) together with diminished urinary K/Na values (0.31?0.19) indicated tubular resistance to aldosterone. After institution of appropriate medical and/or surgical therapy, serum electrolytes, creatinine, and acid-base balance were normalized. Imaging studies showed ureteropyelic or ureterovesical junction obstruction in 3 and 2 patients, respectively, posterior urethral valves in 3, and normal UT in 1 patient. According to our knowledge, this is the first report on THPA1 in the Serbian literature. Conclusion. Male infants with hyponatraemia, hyperkalaemia and metabolic acidosis have to have their urine examined and the renal ultrasound has to be done in order to avoid both, the underdiagnosis of THPA1 and the inappropriate medication.


1987 ◽  
Vol 253 (3) ◽  
pp. G330-G335
Author(s):  
D. S. Goldfarb ◽  
P. M. Ingrassia ◽  
A. N. Charney

We previously reported that systemic pH and HCO3 concentration affect ileal water and electrolyte absorption. To determine whether these effects could influence an ongoing secretory process, we measured transport in ileal loops exposed to either saline or 50-75 micrograms cholera toxin in mechanically ventilated Sprague-Dawley rats anesthetized with pentobarbital sodium. The effects of acute respiratory and metabolic acidosis and alkalosis were then examined. Decreases in systemic pH during respiratory acidosis caused equivalent increases in net water (54 +/- 8 microliters . cm-1 . h-1) and Na absorption (7 +/- 1 mu eq . cm- . h-1) and smaller increases in Cl absorption in cholera toxin compared with saline loops. These increases reversed the net secretion of these ions observed during alkalemia in the cholera toxin loops to net absorption. Metabolic acidosis and alkalosis and respiratory compensation of systemic pH of these metabolic disorders also altered cholera toxin-induced secretion in a direction consistent with the pH change. The increase in net HCO3 secretion caused by cholera toxin was unaffected by the respiratory disorders and did not vary with the HCO3 concentration in the metabolic disorders. These findings suggest that the systemic acid-base disorders that characterize intestinal secretory states may themselves alter intestinal absorptive function and fluid losses.


1985 ◽  
Vol 248 (2) ◽  
pp. F219-F227 ◽  
Author(s):  
E. Higashihara ◽  
J. P. Kokko

Recent studies have suggested that potassium, like urea, undergoes medullary recycling. The present cortical and papillary micropuncture studies were designed to confirm the existence of medullary potassium recycling and to determine whether acute infusions of aldosterone affected this phenomenon. Thus, nephron segmental analysis of potassium and sodium transport was conducted in adrenalectomized Munich-Wistar rats and similarly prepared rats that received aldosterone acutely to achieve physiological blood levels. The clearance results demonstrated that aldosterone has an acute antinatriuretic and a kaliuretic effect, whereas the micropuncture studies demonstrated that 1) aldosterone increases potassium secretion between early and late distal tubule punctures; 2) aldosterone causes an increase in delivery of potassium to the papillary collecting duct; 3) aldosterone does not increase potassium secretion across the papillary collecting duct; and 4) aldosterone significantly increases medullary potassium recycling as evidenced by increased quantities of potassium present at the bend of the loop of Henle in response to aldosterone infusions. Thus, the studies confirm the existence of potassium recycling and suggest that this phenomenon is a feedback system that, in part, regulates urinary potassium excretion.


2002 ◽  
Vol 282 (2) ◽  
pp. F341-F351 ◽  
Author(s):  
Tae-Hwan Kwon ◽  
Christiaan Fulton ◽  
Weidong Wang ◽  
Ira Kurtz ◽  
Jørgen Frøkiær ◽  
...  

Several members of the Na-HCO[Formula: see text] cotransporter (NBC) family have recently been identified functionally and partly characterized, including rkNBC1, NBCn1, and NBC3. Regulation of these NBCs may play a role in the maintenance of intracellular pH and in the regulation of renal acid-base balance. However, it is unknown whether the expressions of these NBCs are regulated in response to changes in acid-base status. We therefore tested whether chronic metabolic acidosis (CMA) affects the abundance of these NBCs in kidneys using two conventional protocols. In protocol 1, rats were treated with NH4Cl in their drinking water (12 ± 1 mmol · rat−1 · day−1) for 2 wk with free access to water ( n = 8). Semiquantitative immunoblotting demonstrated that whole kidney abundance of NBCn1 and NBC3 in rats with CMA was dramatically increased to 995 ± 87 and 224 ± 35%, respectively, of control levels ( P < 0.05), whereas whole kidney rkNBC1 was unchanged (88 ± 14%). In protocol 2, rats were given NH4Cl in their food (10 ± 1 mmol · rat−1 · day−1) for 7 days, with a fixed daily water intake ( n = 6). Consistent with protocol 1, whole kidney abundances of NBCn1 (262 ± 42%) and NBC3 (160 ± 31%) were significantly increased compared with controls ( n = 6), whereas whole kidney rkNBC1 was unchanged (84 ± 17%). In both protocols, immunocytochemistry confirmed upregulation of NBCn1 and NBC3 with no change in the segmental distribution along the nephron. Consistent with the increase in NBCn1, measurements of pH transients in medullary thick ascending limb (mTAL) cells in kidney slices revealed two- to threefold increases in DIDS- sensitive, Na+-dependent HCO[Formula: see text] uptake in rats with CMA. In conclusion, CMA is associated with a marked increase in the abundance of NBCn1 in the mTAL and NBC3 in intercalated cells, whereas the abundance of NBC1 in the proximal tubule was not altered. The increased abundance of NBCn1 may play a role in the reabsorption of NH[Formula: see text] in the mTAL and increased NBC3 in reabsorbing HCO[Formula: see text].


2010 ◽  
Vol 30 (5) ◽  
pp. 63-69 ◽  
Author(s):  
Melissa Beaudet Jones

What are the basic concepts of acid-base balance, the 2 types of metabolic acidosis, and the common causes of each type of metabolic acidosis?


1986 ◽  
Vol 70 (3) ◽  
pp. 277-284 ◽  
Author(s):  
Norman L. M. Wong ◽  
Gary A. Quamme ◽  
John H. Dirks

1. Clearance and micropuncture studies were performed in four groups of acutely thyropara-thyroidectomized animals to study the effects of alkalosis and acidosis on the renal handling of magnesium. 2. Our results indicate that chronic metabolic acidosis reduces, whereas acute metabolic alkalosis enhances, magnesium reabsorption. 3. The site within the nephron where absorption of magnesium increases or decreases during acid-base disturbances was beyond the late proximal tubule. 4. Tubular fluid bicarbonate was also measured in these experiments, and the results indicated that magnesium reabsorption in the distal tubule correlated to bicarbonate delivery. However, whether this was a direct or an indirect effect of bicarbonate on magnesium transport could not be delineated.


Sign in / Sign up

Export Citation Format

Share Document