Corticosteroids decrease glomerular angiotensin receptors

1987 ◽  
Vol 252 (3) ◽  
pp. F453-F457 ◽  
Author(s):  
J. G. Douglas

Angiotensin II (ANG II) receptors of glomerular mesangial cells are regulated in vivo by changes in Na balance, effects that are presumed to be secondary to changes in circulating ANG II. However, since changes in ANG II were accompanied by parallel changes in plasma aldosterone in all models tested, it is possible that aldosterone may have also participated in the modulation of glomerular ANG II receptors. To test this hypothesis, short-term aldosterone infusions within the physiological range were employed to favor actions that would be mediated through a high-affinity mineralocorticoid receptor. The glucocorticoid, dexamethasone, was also tested to determine the mineralocorticoid specificity of the response. Two infusion rates were associated with a decrease in glomerular ANG II receptor density of 33 and 45%, respectively. There were no changes in the affinity of ANG II in either tissue or in adrenal receptor density. Serum potassium and urinary Na/K ratio were lower in the aldosterone group. Spironolactone abolished the effect of aldosterone consistent with an action mediated through a specific mineralocorticoid receptor. Dexamethasone administration produced similar downregulation of glomerular ANG II receptor and was unaccompanied by a change in electrolyte balance or blood volume. These studies support the hypothesis that corticosteroids modulate glomerular ANG II receptors and validate the complexity of glomerular receptor modulation. The downregulation observed would be expected to diminish the ability of ANG II to influence glomerular hemodynamics in models such as mineralocorticoid and glucocorticoid-induced hypertension.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hong Feng ◽  
Junling Gu ◽  
Fang Gou ◽  
Wei Huang ◽  
Chenlin Gao ◽  
...  

While inflammation is considered a central component in the development in diabetic nephropathy, the mechanism remains unclear. The NLRP3 inflammasome acts as both a sensor and a regulator of the inflammatory response. The NLRP3 inflammasome responds to exogenous and endogenous danger signals, resulting in cleavage of procaspase-1 and activation of cytokines IL-1β, IL-18, and IL-33, ultimately triggering an inflammatory cascade reaction. This study observed the expression of NLRP3 inflammasome signaling stimulated by high glucose, lipopolysaccharide, and reactive oxygen species (ROS) inhibitor N-acetyl-L-cysteine in glomerular mesangial cells, aiming to elucidate the mechanism by which the NLRP3 inflammasome signaling pathway may contribute to diabetic nephropathy. We found that the expression of thioredoxin-interacting protein (TXNIP), NLRP3, and IL-1βwas observed by immunohistochemistry in vivo. Simultaneously, the mRNA and protein levels of TXNIP, NLRP3, procaspase-1, and IL-1βwere significantly induced by high glucose concentration and lipopolysaccharide in a dose-dependent and time-dependent manner in vitro. This induction by both high glucose and lipopolysaccharide was significantly inhibited by N-acetyl-L-cysteine. Our results firstly reveal that high glucose and lipopolysaccharide activate ROS/TXNIP/ NLRP3/IL-1βinflammasome signaling in glomerular mesangial cells, suggesting a mechanism by which inflammation may contribute to the development of diabetic nephropathy.


1990 ◽  
Vol 258 (1) ◽  
pp. F162-F167 ◽  
Author(s):  
P. J. Shultz ◽  
A. E. Schorer ◽  
L. Raij

We have investigated whether endothelium-derived relaxing factor (EDRF) and nitric oxide (NO), a substance proposed to be one of the EDRFs, could elicit biochemical and biological responses in rat glomerular mesangial cells (MC). In wells with MC alone, guanosine 3',5'-cyclic monophosphate (cGMP) levels were 2.6 +/- 0.6 fmol/microgram protein, and bradykinin did not affect these levels, whereas in coincubation experiments with bovine aortic EC and rat MC, cGMP levels in MC increased to 44.6 +/- 21 fmol/micrograms protein after bradykinin stimulation (P less than 0.05). This effect was potentiated by superoxide dismutase and inhibited by hemoglobin and L-NG-monomethyl arginine, a specific inhibitor of EDRF synthesis. Increases in cGMP were also observed when MC were incubated directly with NO and were potentiated by superoxide dismutase and inhibited by hemoglobin. We also tested whether NO could inhibit angiotensin II (ANG II)-induced reductions in cross-sectional area (CSA) of MC. When MC were exposed to ANG II only, 65% of the cells underwent a significant reduction in CSA, as measured by digital image analysis. However, when MC were incubated with ANG II and NO, only 10% of cells responded (P less than 0.04). These studies demonstrate that EDRF and NO induce significant biochemical and functional responses in rat glomerular MC and suggest that communication between EC and MC may be important in regulation of glomerular function.


2017 ◽  
Vol 313 (3) ◽  
pp. F729-F739 ◽  
Author(s):  
Sarika Chaudhari ◽  
Weizu Li ◽  
Yanxia Wang ◽  
Hui Jiang ◽  
Yuhong Ma ◽  
...  

Our previous study demonstrated that the abundance of extracellular matrix proteins was suppressed by store-operated Ca2+entry (SOCE) in mesangial cells (MCs). The present study was conducted to investigate the underlying mechanism focused on the transforming growth factor-β1 (TGF-β1)/Smad3 pathway, a critical pathway for ECM expansion in diabetic kidneys. We hypothesized that SOCE suppressed ECM protein expression by inhibiting this pathway in MCs. In cultured human MCs, we observed that TGF-β1 (5 ng/ml for 15 h) significantly increased Smad3 phosphorylation, as evaluated by immunoblot. However, this response was markedly inhibited by thapsigargin (1 µM), a classical activator of store-operated Ca2+channels. Consistently, both immunocytochemistry and immunoblot showed that TGF-β1 significantly increased nuclear translocation of Smad3, which was prevented by pretreatment with thapsigargin. Importantly, the thapsigargin effect was reversed by lanthanum (La3+; 5 µM) and GSK-7975A (10 µM), both of which are selective blockers of store-operated Ca2+channels. Furthermore, knockdown of Orai1, the pore-forming subunit of the store-operated Ca2+channels, significantly augmented TGF-β1-induced Smad3 phosphorylation. Overexpression of Orai1 augmented the inhibitory effect of thapsigargin on TGF-β1-induced phosphorylation of Smad3. In agreement with the data from cultured MCs, in vivo knockdown of Orai1 specific to MCs using a targeted nanoparticle small interfering RNA delivery system resulted in a marked increase in abundance of phosphorylated Smad3 and in nuclear translocation of Smad3 in the glomerulus of mice. Taken together, our results indicate that SOCE in MCs negatively regulates the TGF-β1/Smad3 signaling pathway.


1989 ◽  
Vol 256 (1) ◽  
pp. F171-F178 ◽  
Author(s):  
D. Schlondorff ◽  
P. Singhal ◽  
A. Hassid ◽  
J. A. Satriano ◽  
S. DeCandido

We evaluated the role of GTP-binding proteins in the activation of phospholipase C, release of arachidonic acid, and synthesis of prostaglandin (PG) E2 in response to platelet-activating factor (PAF) and angiotensin II (ANG II) in cultured rat mesangial cells. Pretreatment with pertussis toxin (PT) decreased PGE2 formation and arachidonic acid release in response to PAF and ANG II but not that to A 23187. PT pretreatment also inhibited formation of inositol trisphosphate (IP3) in response to ANG II or PAF but did not significantly alter the rise in intracellular calcium detected by fura-2. PT catalyzed ADP ribosylation of two proteins of molecular mass approximately 40 and 41 kDa. Further evidence for involvement of GTP-binding protein in phospholipase C activation was that GTP-gamma S stimulated IP3 generation. Immunoblots with antibodies directed against different inhibitory alpha subunits of GTP-binding proteins showed that the major 40-kDa PT substrate reacted with an antibody directed against a decapeptide of the G protein subunit alpha i2 that is also found in leukocytes. This was further confirmed by Northern blot that showed the existence of mRNA in mesangial cells that hybridized with a cDNA probe for G alpha i2. In addition lesser amounts of mRNA hybridized with a restriction fragment cDNA probe for G alpha i3, which corresponds to the 41-kDa substrate for PT ribosylation. These results show that phospholipase C activation by PAF and ANG II in mesangial cells involves a specific G protein, most likely G alpha i2.(ABSTRACT TRUNCATED AT 250 WORDS)


2000 ◽  
Vol 279 (6) ◽  
pp. F1092-F1100 ◽  
Author(s):  
Jörg Schwöbel ◽  
Tina Fischer ◽  
Bettina Lanz ◽  
Markus Mohaupt

Angiotensin II (ANG II) and nitric oxide (NO) have contrasting vascular effects, yet both sustain inflammatory responses. We investigated the impact of ANG II on lipopolysaccharide (LPS)/interferon-γ (IFN)-induced NO production in cultured rat mesangial cells (MCs). LPS/IFN-induced nitrite production, the inducible form of nitric oxide synthase (NOS-2) mRNA, and protein expression were dose dependently inhibited by ANG II on coincubation, which was abolished on ANG II type 2 (AT2) receptor blockade by PD-123319. Homology-based RT-PCR verified the presence of AT1A, AT1B, and AT2 receptors. To shift the AT receptor expression toward the type 1 receptor, two sets of experiments were performed: LPS/IFN preincubation for 24 h was followed by 8-h coincubation with ANG II; or during 24-h coincubation of LPS/IFN and ANG II, dexamethasone was added for the last 6-h period. Both led to an amplified overall expression of NOS-2 protein and NO production that was inhibitable by actinomycin D in the first setup. Induced NO production was enhanced via the AT1 receptor; however, it was diminished via the AT2 receptor. In conclusion, induced NO production is negatively controlled by the AT2, whereas AT1 receptor stimulation enhanced NO synthesis in MCs. The overall NO availability depended on the onset of the inflammatory stimuli with respect to ANG II exposure and the available AT receptors.


2000 ◽  
Vol 278 (1) ◽  
pp. F91-F96 ◽  
Author(s):  
Michael B. Ganz ◽  
Karen Hawkins ◽  
Robert F. Reilly

.—Changes in activity or expression of transporters may account for alterations in cell behavior in diabetes. We sought to ascertain if mesangial cells (MC) grown in different glucose concentrations exhibit changes in activity and expression of acid-extruding transporters, the Na+/H+and Na+-dependent Cl−/[Formula: see text]exchanger. pHi was determined by the use of the fluorescent pH-sensitive dye BCECF. In MCs grown in 5 mM glucose (control), the Na+/H+exchanger was responsible for 31.8 ± 5.1% of steady-state pHi, whereas Na+-dependent Cl−/[Formula: see text]contributed 62.9 ± 4.0% ( n = 11). In MCs grown in high glucose for 2 wk, Na+/H+exchange contribution to acid-extrusion increased as follows: 42.3 ± 4.6% [ n = 8, 10 mM, not significant (NS)], 51.1 ± 5.1% ( n = 8, 20 mM, P < 0.01), and 64.8 ± 5.5% ( n = 7, 30 mM, P < 0.001). The Na+-dependent Cl−/[Formula: see text]exchanger contributed less [47.0 ± 4.6, 38.6 ± 5.8, and 21.1 ± 3.8%, for 10, 20, and 30 mM glucose, respectively ( n > 7)]. We sought to ascertain if the magnitude of the acute stimulated response to ANG II by the Na+/H+and Na+-dependent Cl−/[Formula: see text]exchanger is changed. Na+/H+exchanger (1.89-fold increase in 30 vs. 5 mM, P < 0.002), but not Na+-dependent Cl−/[Formula: see text]exchange (0.17-fold, NS), exhibited an enhanced response to ANG II (1 μM). Na+/H+exchange (NHE1) expression was significantly different (1.72-fold) after prolonged exposure to high glucose. These results suggest that the Na+/H+exchanger, but not Na+-dependent Cl−/[Formula: see text]exchanger, may play an early role in the response to hyperglycemia in the diabetic state.


2007 ◽  
Vol 293 (4) ◽  
pp. F1381-F1390 ◽  
Author(s):  
Sarabeth Graham ◽  
Min Ding ◽  
Sherry Sours-Brothers ◽  
Thomas Yorio ◽  
Jian-Xing Ma ◽  
...  

The present study was performed to investigate whether transient receptor potential (TRPC)6 participated in Ca2+ signaling of glomerular mesangial cells (MCs) and expression of this protein was altered in diabetes. Western blots and real-time PCR were used to evaluate the expression level of TRPC6 protein and mRNA, respectively. Cell-attached patch-clamp and fura-2 fluorescence measurements were utilized to assess angiotensin II (ANG II)-stimulated membrane currents and Ca2+ responses in MCs. In cultured human MCs, high glucose significantly reduced expression of TRPC6 protein, but there was no effect on either TRPC1 or TRPC3. The high glucose-induced effect on TRPC6 was time and dose dependent with the maximum effect observed on day 7 and at 30 mM glucose, respectively. In glomeruli isolated from streptozotocin-induced diabetic rats, TRPC6, but not TRPC1, was markedly reduced compared with the glomeruli of control rats. Furthermore, TRPC6 mRNA in MCs was also significantly decreased by high glucose as early as 1 day after treatment with maximal reduction on day 4. Patch-clamp experiments showed that ANG II-stimulated membrane currents in MCs were significantly attenuated or enhanced by knockdown or overexpression of TRPC6, respectively. Fura-2 fluorescence measurements revealed that the ANG II-induced Ca2+ influxes were markedly inhibited in MCs with TRPC6 knockdown, reminiscent of the impaired Ca2+ entry in response to ANG II in high glucose-treated MCs. These results suggest that the TRPC6 protein expression in MCs was downregulated by high glucose and the deficiency of TRPC6 protein might contribute to the impaired Ca2+ signaling of MCs seen in diabetes.


2004 ◽  
Vol 286 (1) ◽  
pp. F134-F143 ◽  
Author(s):  
Shinya Mizuno ◽  
Toshikazu Nakamura

Diabetic nephropathy is now the leading cause of end-stage renal diseases, and glomerular sclerotic injury is an initial event that provokes renal dysfunction during processes of diabetes-linked kidney disease. Growing evidence shows that transforming growth factor-β1 (TGF-β1) plays a key role in this process, especially in eliciting hypertrophy and matrix overaccumulation. Thus it is important to find a ligand system to antagonize the TGF-β1-mediated pathogenesis under high-glucose conditions. Herein, we provide evidence that hepatocyte growth factor (HGF) targets mesangial cells, suppresses TGF-β1 production, and minimizes glomerular sclerotic changes, using streptozotocin-induced diabetic mice. In our murine model, glomerular sclerogenesis (such as tuft area expansion and collagen deposition) progressed between 6 and 10 wk after the induction of hyperglycemia, during a natural course of diabetic disease. Glomerular HGF expression levels in the diabetic kidney transiently increased but then declined below a basal level, with manifestation of glomerular sclerogenesis. When anti-HGF IgG was injected into mice for 2 wk (i.e., from weeks 4 to 6 after onset of hyperglycemia), these glomerular changes were significantly aggravated. When recombinant HGF was injected into the mice for 4 wk (i.e., between 6 and 10 wk following streptozotocin treatment), the progression of glomerular hypertrophy and sclerosis was almost completely inhibited, even though glucose levels remained unchanged (>500 mg/dl). Even more important, HGF repressed TGF-β1 production in glomerular mesangial cells even under hyperglycemic conditions both in vitro and in vivo. Consequently, not only albuminuria but also tubulointerstitial fibrogenesis were attenuated by HGF. Overall, HGF therapy inhibited the onset of renal dysfunction in the diabetic mice. On the basis of these findings, we wish to emphasize that HGF plays physiological and therapeutic roles in blocking renal fibrogenesis during a course of diabetic nephropathy.


2012 ◽  
Vol 90 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Sumin Jiao ◽  
Xiaoyu Zheng ◽  
Xue Yang ◽  
Jin Zhang ◽  
Lining Wang

Human glomerular mesangial cells (HMCs) have a finite lifespan, and eventually enter irreversible growth arrest known as cellular senescence, which is thought to contribute to kidney ageing and age-related kidney disorders, such as chronic kidney disease. The signal transducer and activator of transcription 1 (STAT1) is a latent transcription factor involved in a variety of signal transduction pathways, including cell proliferation, apoptosis, and differentiation, but whether it could regulate HMC senescence still remains to be explored. In our study, the induction of angiotensin II (Ang II)-accelerated HMC senescence, as judged by increased senescence-associated β-galactosidase (SA-β-gal)-positive staining cells, morphological changes, and G0/G1 cell cycle arrest. STAT1 activity and the expression of p53 and p21Cip1 were increased after Ang II treatment. STAT1 knockdown using RNA interference significantly inhibited the progression of HMC senescence and decreased the elevated expression of p53 and p21Cip1. Pretreating HMCs with Ang II receptor blocker losartan also inhibited the progression of HMC senescence and STAT1 activity. Our results indicate that STAT1 is implicated in the mediation of Ang II-induced HMC senescence through p53/ p21Cip1 pathway, and that losartan could attenuate HMC senescence by regulating STAT1. The antioxidant N-acetyl-L-cysteine reduced ROS production and STAT1 activity induced by Ang II, indicating that Ang II uses ROS as a second messenger to regulate STAT1 activity.


2006 ◽  
Vol 290 (4) ◽  
pp. F762-F768 ◽  
Author(s):  
Mario B. Marrero ◽  
Amy K. Banes-Berceli ◽  
David M. Stern ◽  
Douglas C. Eaton

Excessive cellular growth is a major contributor to pathological changes associated with diabetic nephropathy. In particular, high glucose-induced growth of glomerular mesangial cells is a characteristic feature of diabetes-induced renal complications. Glomerular mesangial cells respond to traditional growth factors, although in diabetes this occurs in the context of an environment enriched in both circulating vasoactive mediators and high glucose. For example, the vasoactive peptide ANG II has been implicated in the pathogenesis of diabetic renal disease, and recent findings suggest that high glucose and ANG II activate intracellular signaling processes, including the polyol pathway and generation of reactive oxygen species. These pathways activate the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling cascades in glomerular mesangial cells. Activation of the JAK/STAT signaling cascade can stimulate excessive proliferation and growth of glomerular mesangial cells, contributing to diabetic nephropathy. This review focuses on some of the key elements in the diabetic microenvironment, especially high glucose and the accumulation of advanced glycoxidation end products and considers their impact on ANG II and other vasoactive peptide-mediated signaling events in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document