smad3 phosphorylation
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 24)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lucia Balazova ◽  
Miroslav Balaz ◽  
Carla Horvath ◽  
Áron Horváth ◽  
Caroline Moser ◽  
...  

AbstractActivation of thermogenic brown and beige adipocytes is considered as a strategy to improve metabolic control. Here, we identify GPR180 as a receptor regulating brown and beige adipocyte function and whole-body glucose homeostasis, whose expression in humans is associated with improved metabolic control. We demonstrate that GPR180 is not a GPCR but a component of the TGFβ signalling pathway and regulates the activity of the TGFβ receptor complex through SMAD3 phosphorylation. In addition, using genetic and pharmacological tools, we provide evidence that GPR180 is required to manifest Collagen triple helix repeat containing 1 (CTHRC1) action to regulate brown and beige adipocyte activity and glucose homeostasis. In this work, we show that CTHRC1/GPR180 signalling integrates into the TGFβ signalling as an alternative axis to fine-tune and achieve low-grade activation of the pathway to prevent pathophysiological response while contributing to control of glucose and energy metabolism.


2021 ◽  
Author(s):  
Xiaopei Liu ◽  
Zhou Jining ◽  
Bofang Zhang ◽  
Gen Liu ◽  
Qi Hu ◽  
...  

Abstract The epigenetic molecule KDM3A has been shown to be involved in improving cardiovascular diseases, but its effect on cardiac fibroblasts (CFs) remains unclear. Thus, we designed the gain- and loss-of-function experiments to investigate the biological functions of KDM3A in cardiac fibroblasts (CFs). Moreover, we added a SIS3-HCL (a specific inhibitor of p-Smad3) to explore the underlying mechanism. The cells viability and migration were verified by CCK-8 and cell migration experiments, respectively, and the degree of fibrosis was measured by Western blot analysis. Our data reveal that KDM3A enhance the proliferation and migration of cardiac fibroblasts, meanwhile, increasing the fibroblast-to-myofibroblast transition, while enabling Smad3 phosphorylation response to TGFβ1 stimuli. However, these results could be abolished by SIS3-HCL, an inhibitor of the p-Smad3. Furthermore, KDM3A inhibition obviously protect cardiac fibroblasts conversion against TGFβ1 stimuli. These results identify that KDM3A may be a novel regulator of the cardiac fibroblasts conversion, through its ability to modulate phosphorylation of Smad3 following TGFβ1 stimuli.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5343
Author(s):  
Joseph T. Decker ◽  
Jeffrey A. Ma ◽  
Lonnie D. Shea ◽  
Jacqueline S. Jeruss

TGFβ signaling enacts tumor-suppressive functions in normal cells through promotion of several cell regulatory actions including cell-cycle control and apoptosis. Canonical TGFβ signaling proceeds through phosphorylation of the transcription factor, SMAD3, at the C-terminus of the protein. During oncogenic progression, this tumor suppressant phosphorylation of SMAD3 can be inhibited. Overexpression of cyclins D and E, and subsequent hyperactivation of cyclin-dependent kinases 2/4 (CDKs), are often observed in breast cancer, and have been associated with poor prognosis. The noncanonical phosphorylation of SMAD3 by CDKs 2 and 4 leads to the inhibition of tumor-suppressive function of SMAD3. As a result, CDK overactivation drives oncogenic progression, and can be targeted to improve clinical outcomes. This review focuses on breast cancer, and highlights advances in the understanding of CDK-mediated noncanonical SMAD3 phosphorylation. Specifically, the role of aberrant TGFβ signaling in oncogenic progression and treatment response will be examined to illustrate the potential for therapeutic discovery in the context of cyclins/CDKs and SMAD3.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Martin L. Decaris ◽  
Johanna R. Schaub ◽  
Chun Chen ◽  
Jacob Cha ◽  
Gail G. Lee ◽  
...  

Abstract Rationale αv integrins, key regulators of transforming growth factor-β activation and fibrogenesis in in vivo models of pulmonary fibrosis, are expressed on abnormal epithelial cells (αvβ6) and fibroblasts (αvβ1) in fibrotic lungs. Objectives We evaluated multiple αv integrin inhibition strategies to assess which most effectively reduced fibrogenesis in explanted lung tissue from patients with idiopathic pulmonary fibrosis. Methods Selective αvβ6 and αvβ1, dual αvβ6/αvβ1, and multi-αv integrin inhibitors were characterized for potency, selectivity, and functional activity by ligand binding, cell adhesion, and transforming growth factor-β cell activation assays. Precision-cut lung slices generated from lung explants from patients with idiopathic pulmonary fibrosis or bleomycin-challenged mouse lungs were treated with integrin inhibitors or standard-of-care drugs (nintedanib or pirfenidone) and analyzed for changes in fibrotic gene expression or TGF-β signaling. Bleomycin-challenged mice treated with dual αvβ6/αvβ1 integrin inhibitor, PLN-74809, were assessed for changes in pulmonary collagen deposition and Smad3 phosphorylation. Measurements and main results Inhibition of integrins αvβ6 and αvβ1 was additive in reducing type I collagen gene expression in explanted lung tissue slices from patients with idiopathic pulmonary fibrosis. These data were replicated in fibrotic mouse lung tissue, with no added benefit observed from inhibition of additional αv integrins. Antifibrotic efficacy of dual αvβ6/αvβ1 integrin inhibitor PLN-74809 was confirmed in vivo, where dose-dependent inhibition of pulmonary Smad3 phosphorylation and collagen deposition was observed. PLN-74809 also, more potently, reduced collagen gene expression in fibrotic human and mouse lung slices than clinically relevant concentrations of nintedanib or pirfenidone. Conclusions In the fibrotic lung, dual inhibition of integrins αvβ6 and αvβ1 offers the optimal approach for blocking fibrogenesis resulting from integrin-mediated activation of transforming growth factor-β.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Bin Hou ◽  
Wenhan Li ◽  
Peng Xia ◽  
Fengyu Zhao ◽  
Zhao Liu ◽  
...  

AbstractThe roles of phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) in tumorigenesis have been recently proven in hepatocellular carcinoma (HCC), cervical, pancreatic, bladder, and thyroid cancers. Previous research demonstrated that LHPP repressed cell proliferation and growth by inactivating the phosphatidylinositol 3-kinase/AKT signaling pathway in vitro and in vivo. However, the functions and potential mechanisms of LHPP as a tumor suppressor in colorectal cancer (CRC) metastasis are still unknown. Consequently, the Transwell assay and xenograft nude model showed that LHPP inhibited migration and invasion of CRC cells in vitro and in vivo, respectively. The expression of total and nuclear epithelial-to-mesenchymal transition (EMT)-related proteins were significantly reduced after LHPP upregulation. Human Gene Expression Array and IPA (Ingenuity Pathway Analysis) commercial software were applied to identify differentially expressed genes (DEGs) and potential cell signaling pathways. A total of 330 different genes were observed, including 177 upregulated genes and 153 downregulated genes. Bioinformatics analysis suggested that the transforming growth factor-β (TGF-β) signaling pathway was highly inactivated in this study. Then, Smad3 phosphorylation was apparently decreased, whereas Smad7 expression was markedly enhanced after upregulating LHPP expression. These results were proven once again after TGF-β1 stimulation. Furthermore, a specific inhibitor of Smad3 phosphorylation (SIS3) was applied to verify that LHPP repressed EMT of cancer cells by attenuating TGF-β/Smad signaling. The results suggested that suppression of the TGF-β/Smad signaling pathway by LHPP overexpression could be abolished by SIS3.


2021 ◽  
Author(s):  
Sabrina Fox ◽  
Sonya A. Widen ◽  
Mika Asai-Coakwell ◽  
Serhiy Havrylov ◽  
Matthew Benson ◽  
...  

Abstract Coloboma, a congenital disorder characterized by gaps in ocular tissues, is caused when the choroid fissure fails to close during embryonic development. Several loci have been associated with coloboma, but these represent less than 40% of those that are involved with this disease. Here, we describe a novel coloboma-causing locus, BMP3. Whole exome sequencing and Sanger sequencing of patients with coloboma identified three variants in BMP3, two of which are predicted to be disease causing. Consistent with this, bmp3 mutant zebrafish have aberrant fissure closure. bmp3 is expressed in the ventral head mesenchyme and regulates phosphorylated Smad3 in a population of cells adjacent to the choroid fissure. Furthermore, mutations in bmp3 sensitize embryos to Smad3 inhibitor treatment resulting in open choroid fissures. Micro CT scans and Alcian blue staining of zebrafish demonstrate that mutations in bmp3 cause midface hypoplasia, suggesting that bmp3 regulates cranial neural crest cells. Consistent with this, we see active Smad3 in a population of periocular neural crest cells, and bmp3 mutant zebrafish have reduced neural crest cells in the choroid fissure. Taken together, this data suggests that Bmp3 controls Smad3 phosphorylation in neural crest cells to regulate early craniofacial and ocular development.


2021 ◽  
Vol 21 (6) ◽  
Author(s):  
Narges Mohammadtaghvaei ◽  
Reza Afarin ◽  
Fatemeh Mavalizadeh ◽  
Elham Shakerian ◽  
Samaneh Salehipour Bavarsad ◽  
...  

Background: Hepatic stellate cells (HSCs) play a primary role in liver fibrogenesis. NOXs are the main origin of reactive oxygen species (ROS) in the liver. Among them, NOX1, NOX2, and NOX4 are expressed more in HSCs and are involved in the development of liver fibrosis. Quercetin, an abundant citrus flavonoid, is known to have beneficial effects on liver injury and hepatic fibrosis. Objectives: In this study, the effect of quercetin on NOX1, NOX2, and NOX4 expression and Smad3 phosphorylation induced by TGF-β in the human hepatic LX2 cell line was investigated. Methods: The cytotoxic effects of quercetin on the cells were determined by MTT assay. The cells were activated with 2 ng/mL of TGF-β for 24 h and then treated with different concentrations of Quercetin. The mRNA expression rates of NOX1, NOX2, NOX4, and phosphorylated Smad 3C (p-Smad3C) were analyzed using real-time polymerase chain reaction (PCR) and western blot assays. Results: TGF-β increased the mRNA expression of NOX1, NOX2, and NOX4 and the protein level of p-Smad3C in the LX2 cell line. Quercetin significantly decreased the mRNA expression of NOX1, NOX2, and NOX4 in the LX-2 cells. Moreover, quercetin significantly diminished the p-Smad3C level in the LX-2 cell line activated with TGF-β. Conclusions: Quercetin may be effective in improving hepatic fibrosis via the reduction of NOX1, NOX2, and NOX4 expression in activated HSCs. The main mechanism through which quercetin reduces the expression of these target genes may be related to the reduction of the p-Smad3C level.


Author(s):  
Sabrina Fox ◽  
Sonya Widen ◽  
Mika Asai-Coakwell ◽  
Serhiy Havrylov ◽  
Matthew Benson ◽  
...  

Coloboma, a congenital disorder characterized by gaps in ocular tissues, is caused when the choroid fissure fails to close during embryonic development. Several loci have been associated with coloboma, but these represent less than 40% of those that are involved with this disease. Here, we describe a novel coloboma-causing locus, BMP3. Whole exome sequencing and Sanger sequencing of patients with coloboma identified three variants in BMP3, two of which are predicted to be disease causing. Consistent with this, bmp3 mutant zebrafish have aberrant fissure closure. bmp3 is expressed in the ventral head mesenchyme and regulates phosphorylated Smad3 in a population of cells adjacent to the choroid fissure. Furthermore, mutations in bmp3 sensitize embryos to Smad3 inhibitor treatment resulting in open choroid fissures. Micro CT scans and Alcian blue staining of zebrafish demonstrate that mutations in bmp3 cause midface hypoplasia, suggesting that bmp3 regulates cranial neural crest cells. Consistent with this, we see active Smad3 in a population of periocular neural crest cells, and bmp3 mutant zebrafish have reduced neural crest cells in the choroid fissure. Taken together, this data suggests that Bmp3 controls Smad3 phosphorylation in neural crest cells to regulate early craniofacial and ocular development.


2021 ◽  
Vol 134 (15) ◽  
Author(s):  
Cecilia Savorani ◽  
Matteo Malinverno ◽  
Roberta Seccia ◽  
Claudio Maderna ◽  
Monica Giannotta ◽  
...  

ABSTRACT Endothelial-to-mesenchymal transition (EndMT) is the biological process through which endothelial cells transdifferentiate into mesenchymal cells. During embryo development, EndMT regulates endocardial cushion formation via TGFβ/BMP signaling. In adults, EndMT is mainly activated during pathological conditions. Hence, it is necessary to characterize molecular regulators cooperating with TGFβ signaling in driving EndMT, to identify potential novel therapeutic targets to treat these pathologies. Here, we studied YAP, a transcriptional co-regulator involved in several biological processes, including epithelial-to-mesenchymal transition (EMT). As EndMT is the endothelial-specific form of EMT, and YAP (herein referring to YAP1) and TGFβ signaling cross-talk in other contexts, we hypothesized that YAP contributes to EndMT by modulating TGFβ signaling. We demonstrate that YAP is required to trigger TGFβ-induced EndMT response, specifically contributing to SMAD3-driven EndMT early gene transcription. We provide novel evidence that YAP acts as SMAD3 transcriptional co-factor and prevents GSK3β-mediated SMAD3 phosphorylation, thus protecting SMAD3 from degradation. YAP is therefore emerging as a possible candidate target to inhibit pathological TGFβ-induced EndMT at early stages.


Author(s):  
Fanghui Chen ◽  
Le Sheng ◽  
Chenjie Xu ◽  
Jun Li ◽  
Ilyas Ali ◽  
...  

The dairy cattle suffer from severe liver dysfunction during the pathogenesis of ketosis. The Ufm1 conjugation system is crucial for liver development and homeostasis. Ufm1 binding protein (Ufbp1) is a putative Ufm1 target and an integral component, but its role in ketosis-induced liver injury is unclear so far. The purpose of this study is to explore the key role of Ufbp1 in liver fibrosis caused by ketosis in vivo and in vitro. Liver tissues were collected from ketotic cows and Ufbp1 conditional knockout (CKO) mice in vivo. However, Ufbp1–/– mouse embryonic fibroblast cells and Hela cells were used for in vitro validation. Subsequently, various assays were performed to reveal the underlying molecular mechanisms of the Ufbp1 protective effect. In this study, hepatic fibrosis, endoplasmic reticulum (ER) stress, and apoptosis were reported in the liver of ketotic cows, fibrotic markers (alpha-smooth muscle actin, Collagen1) and ER stress markers (glucose-regulated protein 78, CEBP homologous protein) were upregulated remarkably, and the apoptosis-related genes (Bcl2, Bax) were in line with expectations. Interestingly, Ufbp1 expression was almost disappeared, and Smad2/Smad3 protein was largely phosphorylated in the liver of ketotic cows, but Ufbp1 deletion caused Smad3 phosphorylation apparently, rather than Smad2, and elevated ER stress was observed in the CKO mice model. At the cellular level, Ufbp1 deficiency led to serious fibrotic and ER stress response, Smad3 was activated by phosphorylation significantly and then was translocated into the nucleus, whereas p-Smad2 was largely unaffected in embryonic fibroblast cells. Ufbp1 overexpression obviously suppressed Smad3 phosphorylation in Hela cells. Ufbp1 was found to be in full combination with Smad3 using endogenous immunoprecipitation. Taken together, our findings suggest that downregulation or ablation of Ufbp1 leads to Smad3 activation, elevated ER stress, and hepatocyte apoptosis, which in turn causes liver fibrosis. Ufbp1 plays a protective role in ketosis-induced liver injury.


Sign in / Sign up

Export Citation Format

Share Document