scholarly journals Ultrastructural localization of carbonic anhydrase II in subpopulations of intercalated cells of the rat kidney.

1990 ◽  
Vol 1 (3) ◽  
pp. 245-256 ◽  
Author(s):  
J Kim ◽  
C C Tisher ◽  
P J Linser ◽  
K M Madsen

At least two configurations of intercalated cells, type A and type B, are present in the cortical collecting duct. Intercalated cells are rich in carbonic anhydrase. However, it is not known whether there are differences in the level and subcellular distribution of this enzyme between type A and type B intercalated cells. The purpose of this study was to determine the relative content and intracellular distribution of carbonic anhydrase II in the various subpopulations of intercalated cells in the rat collecting duct. A rabbit polyclonal antibody directed against mouse erythrocyte carbonic anhydrase II was employed to localize carbonic anhydrase, II by light and electron microscopy by an indirect immunoperoxidase method. A Western immunoblot analysis of homogenates of rat kidney cortex and medulla with the carbonic anhydrase II antibody revealed a single polypeptide band at 29 kDa corresponding to the molecular size of carbonic anhydrase II. By both light and electron microscopy, carbonic anhydrase II immunoreactivity was present in all intercalated cells but the intensity of staining was much greater in type A than in type B cells. In addition, immunostaining in type A cells was especially pronounced in the apical cytoplasm and apical microprojections whereas in type B cells, immunostaining was more diffuse throughout the cytoplasm. A third configuration of intercalated cell with diffuse immunostaining for carbonic anhydrase II was occasionally observed in the connecting segment. Very weak immunostaining was present in principal cells, whereas connecting tubule cells and inner medullary collecting duct cells were negative for carbonic anhydrase II.(ABSTRACT TRUNCATED AT 250 WORDS)

1999 ◽  
Vol 10 (1) ◽  
pp. 1-12 ◽  
Author(s):  
JIN KIM ◽  
YOUNG-HEE KIM ◽  
JUNG-HO CHA ◽  
C. CRAIG TISHER ◽  
KIRSTEN M. MADSEN

Abstract. At least two populations of intercalated cells, type A and type B, exist in the connecting tubule (CNT), initial collecting tubule (ICT), and cortical collecting duct (CCD). Type A intercalated cells secrete protons via an apical H+ - ATPase and reabsorb bicarbonate by a band 3-like Cl-/HCO3- exchanger, AE1, located in the basolateral plasma membrane. Type B intercalated cells secrete bicarbonate by an apical Cl-/HCO3- exchanger that is distinct from AE1 and remains to be identified. They express H+ -ATPase in the basolateral plasma membrane and in vesicles throughout the cytoplasm. A third type of intercalated cell with apical H+ -ATPase, but no AE1, has been described in the CNT and CCD of both rat and mouse. The prevalence of the third cell type is not known. The aim of this study was to characterize and quantify intercalated cell subtypes, including the newly described third non A-non B cell, in the CNT, ICT, and CCD of the rat and mouse. A triple immunolabeling procedure was developed in which antibodies to H+ -ATPase and band 3 protein were used to identify subpopulations of intercalated cells, and segment-specific antibodies were used to identify distal tubule and collecting duct segments. In both rat and mouse, intercalated cells constituted approximately 40% of the cells in the CNT, ICT, and CCD. Type A, type B, and non A-non B intercalated cells were observed in all of the three segments, with type A cells being the most prevalent in both species. In the mouse, however, non A-non B cells constituted more than half of the intercalated cells in the CNT, 39% in the ICT, and 22% in the CCD, compared with 14, 7, and 5%, respectively, in the rat. In contrast, type B intercalated cells accounted for only 8 to 16% of the intercalated cells in the three segments in the mouse compared with 26 to 39% in the rat. It is concluded that striking differences exist in the prevalence and distribution of the different types of intercalated cells in the CNT, ICT, and CCD of rat and mouse. In the rat, the non A-non B cells are fairly rare, whereas in the mouse, they constitute a major fraction of the intercalated cells, primarily at the expense of the type B intercalated cells.


1996 ◽  
Vol 270 (4) ◽  
pp. F575-F592 ◽  
Author(s):  
J. Kim ◽  
J. H. Cha ◽  
C. C. Tisher ◽  
K. M. Madsen

In the developing rat kidney, both type A and type B intercalated cells are present throughout the medullary collecting duct (MCD), as well as the papillary surface epithelium. After birth, intercalated cells gradually disappear from the papillary surface epithelium and the terminal MCD, and type B cells disappear from the entire MCD. The purpose of this study was to establish the mechanism(s) by which intercalated cells are deleted from the MCD during development. Kidneys from 14-, 16-, 18-, and 20-day-old fetuses and 1-, 3-, 7-, and 14-day-old pups were preserved for light microscopic immunohistochemistry and electron microscopy. Intercalated cells were identified by immunostaining for H(+)-adenosinetriphosphatase (H(+)-ATPase) and band 3 protein. Apoptosis was identified by nick end labeling of DNA fragments, staining with the vital dye toluidine blue, and transmission electron microscopy. Two distinct mechanisms of elimination of intercalated cells were detected. Cells with apical labeling for H(+)-ATPase and basolateral labeling for band 3 protein protruded into the lumen of the MCD as if they were being extruded from the epithelium, and many had lost contact with the basement membrane. Extrusion of the cells with basolateral H(+)-ATPase or with no labeling for H(+)-ATPase was never observed. Apoptosis was observed in the MCD from shortly before birth to 7 days after birth, gradually progressing from the papillary tip toward the outer medulla. Staining for apoptosis was present in H(+)-ATPase-positive apoptotic bodies, located in cells that were negative for H(+)-ATPase. Staining was also occasionally observed in apoptotic cells with basolateral H(+)-ATPase but never in cells with apical H(+)-ATPase. Electron microscopy confirmed the presence of apoptotic intercalated cells in the MCD and demonstrated that apoptotic bodies were located in inner medullary collecting duct (IMCD) cells and principal cells. These results demonstrate that intercalated cells are deleted from the MCD by two distinct mechanisms, one involving apoptosis and subsequent phagocytosis by neighboring principal cells or IMCD cells. Elimination by extrusion affects only type A intercalated cells, whereas deletion by apoptosis appears to occur only in type B intercalated cells.


1994 ◽  
Vol 266 (6) ◽  
pp. F977-F990 ◽  
Author(s):  
J. Kim ◽  
C. C. Tisher ◽  
K. M. Madsen

Intercalated cells are present in both the collecting duct, which is derived from the ureteric bud, and the connecting tubule (CNT), which is part of the nephron and thus is developed from the metanephric blastema. However, the embryologic origin of the intercalated cells has not been established. Two populations of intercalated cells, type A and type B, exist in the CNT and the cortical collecting duct (CCD). It is uncertain, however, whether these cells represent truly distinct cell types or whether one is derived from the other. In this study we have used specific antibodies to carbonic anhydrase II (CA II), H(+)-adenosinetriphosphatase (H(+)-ATPase), and band 3 protein to identify subpopulations of intercalated cells, to determine the site and time of their appearance, and to follow their differentiation in the developing rat kidney. Prenatal kidneys from 16-, 17-, 18-, and 20-day-old fetuses, and postnatal kidneys from 0-, 3-, 7-, 14-, and 21-day-old pups were preserved for immunohistochemical studies. Immunostaining for CA II and H(+)-ATPase appeared simultaneously in a subpopulation of cells in the CNT and the medullary collecting duct (MCD) of the 18-day-old fetus, suggesting that intercalated cells differentiate from separate foci, one in the nephron and one in the collecting duct. Cells with apical and cells with basolateral labeling for H(+)-ATPase appeared in the CNT and MCD at 18 days of gestation, indicating that type A and type B cells differentiate simultaneously during renal development. Band 3 immunostaining was very weak in the fetal kidney, but a striking increase in labeling was observed in the 3-day-old kidney, suggesting that there is an activation of acid-secreting cells shortly after birth. In the fetal kidney, immunostaining for CA II and H(+)-ATPase was observed in cells throughout the MCD and on the papillary surface. After birth, immunostaining gradually disappeared from both the papillary surface and the terminal inner MCD, and cells with basolateral labeling for H(+)-ATPase gradually disappeared from the outer MCD. The results of this study suggest that type A and type B intercalated cells represent distinct cell types that derive from undifferentiated cells at two separate foci, one in the nephron and one in the collecting duct. Our results also suggest that entire populations of intercalated cells are eliminated from the collecting duct during normal renal development.


1987 ◽  
Vol 253 (6) ◽  
pp. F1142-F1156 ◽  
Author(s):  
J. W. Verlander ◽  
K. M. Madsen ◽  
C. C. Tisher

Recent studies suggest the presence of two populations of intercalated cells in the rabbit cortical collecting duct (CCD), one involved with hydrogen ion secretion and another that may play a role in bicarbonate secretion. The purpose of this study was to determine whether two populations of intercalated cells are present in the rat CCD and to establish their response to acute respiratory acidosis. Rats were studied during normal acid-base conditions and after 4-5 h of respiratory acidosis. In all animals light microscopy and transmission and scanning electron microscopy revealed two configurations of intercalated cells, type A with an extensive apical tubulovesicular membrane compartment and prominent surface microprojections and type B with a well-developed vesicular compartment and short sparse surface microprojections. By transmission electron microscopy, studs were present on the cytoplasmic face of the apical plasmalemma and tubulovesicular profiles of A cells. In respiratory acidosis there was a striking increase in apical microprojections and in the surface density of the apical membrane of type A cells similar to the response observed previously in intercalated cells in the outer medullary collecting duct (OMCD) studied under the same physiological conditions. No changes were observed in type B cells. Scanning electron microscopy revealed no change in the relative number of type A and type B cells in respiratory acidosis. We conclude that two distinct populations of intercalated cells exist in the rat CCD: type A, which resembles the intercalated cells in the OMCD, and type B. The response of type A cells to acute respiratory acidosis and the similarity between these cells and intercalated cells in the OMCD, which are believed to secrete hydrogen ion, suggest that the type A cells are involved in hydrogen ion secretion in the CCD.


1992 ◽  
Vol 40 (10) ◽  
pp. 1535-1545 ◽  
Author(s):  
J G Kleinman ◽  
J L Bain ◽  
C Fritsche ◽  
D A Riley

Rat inner medullary collecting duct (IMCD) secretes substantial amounts of H+. However, carbonic anhydrase (CA), a concomitant of H+ secretion, has been generally reported absent in this segment. To reexamine this problem, we investigated CA and the morphological phenotypes of cells comprising the IMCD by CA histochemistry, using a modified Hansson technique with light and electron microscopy. Throughout the medulla, tubule cells exhibit histochemical CA activity. In the initial third of the inner medulla, a small proportion have features of intercalated cells and demonstrate some degree of CA activity. However, the majority population in the early portions of the IMCD appears to consist of principal cells. These also show CA staining of widely variable intensity, both among and within cells. A third cell type, previously called "IMCD cells", appears in the middle portion of the IMCD and is the only cell type present near the papilla tip. In contrast to previous reports, these "IMCD cells" have histochemical CA staining, also of highly variable intensity. These results demonstrate that stainable carbonic anhydrase to support acidification is present throughout the rat IMCD, both in intercalated cells and in some cells clearly not of this type. Therefore, the presence of CA is not specific for the intercalated cell type and suggests that other cell types may participate in acid secretion in IMCD.


2003 ◽  
Vol 51 (9) ◽  
pp. 1217-1224 ◽  
Author(s):  
Matti S. Kyllönen ◽  
Seppo Parkkila ◽  
Hannu Rajaniemi ◽  
Abdul Waheed ◽  
Jeffrey H. Grubb ◽  
...  

Membrane-associated carbonic anhydrase (CA) has a crucial role in renal HCO3− absorption. CA activity has been localized to both luminal and basolateral membranes of the tubule epithelial cells. CA XII is a transmembrane isoenzyme that has been demonstrated in the basolateral plasma membrane of human renal, intestinal, and reproductive epithelia. The present study was designed to demonstrate the distribution of CA XII expression in the rodent kidney. A new polyclonal antibody to recombinant mouse CA XII was used in both Western blotting and immunohistochemistry. Western blotting analysis revealed a 40–45-kD polypeptide in CA XII-expressing CHO cells and isolated membranes of mouse and rat kidney. Immunofluorescence staining localized CA XII in the basolateral plasma membranes of S1 and S2 proximal tubule segments. Abundant basolateral staining of CA XII was seen in a subpopulation of cells in both cortical and medullary collecting ducts. Double immunofluorescence staining identified these cells as H+-secreting type A intercalated cells. The localization of CA XII in the peritubular space of proximal tubules suggests that it may play a role in renal HCO3− absorption, whereas the function of CA XII in the type A intercalated cells needs further investigation.


2017 ◽  
Vol 313 (6) ◽  
pp. F1254-F1263 ◽  
Author(s):  
Aurélie Edwards ◽  
Gilles Crambert

The cortical collecting duct (CCD) forms part of the aldosterone-sensitive distal nephron and plays an essential role in maintaining the NaCl balance and acid-base status. The CCD epithelium comprises principal cells as well as different types of intercalated cells. Until recently, transcellular Na+ transport was thought to be restricted to principal cells, whereas (acid-secreting) type A and (bicarbonate-secreting) type B intercalated cells were associated with the regulation of acid-base homeostasis. This review describes how this traditional view has been upended by several discoveries in the past decade. A series of studies has shown that type B intercalated cells can mediate electroneutral NaCl reabsorption by a mechanism involving Na+-dependent and Na+-independent Cl−/[Formula: see text] exchange, and that is energetically driven by basolateral vacuolar H+-ATPase pumps. Other research indicates that type A intercalated cells can mediate NaCl secretion, through a bumetanide-sensitive pathway that is energized by apical H+,K+-ATPase type 2 pumps operating as Na+/K+ exchangers. We also review recent findings on the contribution of the paracellular route to NaCl transport in the CCD. Last, we describe cross-talk processes, by which one CCD cell type impacts Na+/Cl− transport in another cell type. The mechanisms that have been identified to date demonstrate clearly the interdependence of NaCl and acid-base transport systems in the CCD. They also highlight the remarkable versatility of this nephron segment.


1988 ◽  
Vol 255 (1) ◽  
pp. F115-F125 ◽  
Author(s):  
J. W. Verlander ◽  
K. M. Madsen ◽  
P. S. Low ◽  
D. P. Allen ◽  
C. C. Tisher

Band 3 protein is the major anion transport protein of the erythrocyte cell membrane where it catalyzes the exchange of HCO3- for Cl-. There is evidence that band 3 protein is present in the collecting duct of both the rat and rabbit kidney. We used colloidal-gold immunocytochemistry to determine the ultrastructural location of band 3 protein in the rat cortical (CCD) and outer medullary collecting ducts (OMCD). Kidneys of normal Sprague-Dawley rats were fixed by intravascular perfusion with 1% glutaraldehyde and embedded in Lowicryl K4M. Two polyclonal antibodies raised in rabbits were used as the primary antibody in separate experiments, one against the 43-kDa fragment of the cytoplasmic domain of human erythrocyte band 3 protein and the other against rat erythrocyte band 3 protein. This was followed by exposure to gold-conjugated goat anti-rabbit immunoglobulin G. Transmission electron microscopy revealed gold particles along the basal and lateral plasma membranes of all intercalated cells of the OMCD. In the CCD, the basal and lateral plasma membranes of the type A intercalated cells only were labeled with gold particles. The type B intercalated cells and principal cells were devoid of gold particles, as were all cells of the proximal tubule, the distal convoluted tubule, and the thick ascending limb of the loop of Henle. We conclude that a Cl(-)-HCO3- transporter is present in the basal and lateral plasma membranes of the intercalated cells in the OMCD and the type A intercalated cells in the CCD. These findings provide further evidence that these intercalated cells are involved in H+ secretion in the OMCD and CCD of the rat. We have no evidence for the presence of band 3 protein in the type B intercalated cells of the CCD, which supports the hypothesis that type B cells are functionally and structurally distinct from type A cells.


2018 ◽  
Vol 30 (8) ◽  
pp. 1137 ◽  
Author(s):  
E. Beltrán-Frutos ◽  
V. Seco-Rovira ◽  
J. Martínez-Hernández ◽  
C. Ferrer ◽  
L. M. Pastor

The aim of the present study was to evaluate the changes that occur in hamster Leydig cells during regression. Animals were divided into control, mild regression (MR), strong regression (SR) and total regression (TR) groups. Leydig cells were characterised by light and electron microscopy. Terminal deoxyribonucleotidyl transferase-mediated dUTP–digoxigenin nick end-labelling (TUNEL) and proliferating cell nuclear antigen (PCNA) antibodies were used to detect apoptosis and proliferation respectively. Three types of Leydig cells (A, B and C) could be differentiated. Type A cells were small in size compared with Leydig cells from animals exposed to a long photoperiod, which was a result of a decreased cytoplasm and nucleus. Type B cells were even smaller than Type A cells in regression groups. Type C exhibited cytoplasm vacuolisation. The percentage of Type C cells from the control group was much lower than in the MR, SR and TR groups. (P < 0.05). In the SR and TR groups, there was a significant decrease in the percentage of Type B cells compared with the control and MR groups (P < 0.05). The total number of Leydig cells decreased during testicular regression (P < 0.05). The total number of Type A and B cells was significantly lower in the MR, SR and TR groups compared with the control group (P < 0.05). There were no significant differences in the proliferation and apoptosis index in the groups studied. The findings of the present study indicate that there are three types of Leydig cells (A, B and C) in all hamsters studied and that regression causes an increase in the number of Type C cells, so that the reduction in the number Leydig cells during the phases of regression studied must be the result of necrosis and/or necroptosis.


1978 ◽  
Vol 15 (4) ◽  
pp. 506-518 ◽  
Author(s):  
G. Bestetti

The granules (Drusen) within the inflammatory lesions in three cases of infection by Actinomyeetales were studied with light and electron microscopy. The material consisted of subcutaneous granulomas caused by Actinomyces bovis in a cow, epidural granulomas caused by A. viscosus in the spinal canal of a cat and cerebral granulomas caused by Nocardia in a dog. The granules of A. bovis were 2000 to 3000 micrometers in diameter. Their centers consisted of a slightly basophilic, gram- and grocott-negative material with branching, gram-and grocott-positive filaments. The periphery was slightly basophilic or eosinophilic, but gram- and grocott-positive. Its surface was made of clubs (15 × 3.5 micrometers); they were acidophilic, gram- and grocott-negative. In the center of the granule there are numerous type a cells (coccobacillary cells with a trilaminar cell wall of 12 nanometers) and rarely type b cells (filaments with bilaminar cell wall of 30 nanometers). The periphery was made of germinative centers of type a cells. The clubs were lytic type b cells, embedded in an amorphous material. The granules (Drusen) of A. viscosus were 200 to 600 micrometers in diameter. Their center was slightly eosinophilic, gram- and grocott-negative and contained gram- and grocott-positive filaments. Their periphery was basophilic and contained alternating gram-and grocott-negative areas and radial gram- and grocott-positive filaments. There were no clubs. In the center there were type b cells (filaments with a trilaminar cellular wall of 30 nanometers). The periphery was made of germinative centers of type a cells (coccobacillary with a trilaminar cell wall of 10 to 11 nanometers). The germinative centers were separated from each other by radial bundles of type b cells. The granules (Drusen) of Nocardia were acidophilic, gram- and grocott-positive and surrounded by 1.8 × 0.5-micrometer clubs that were acidophilic, gram- and grocott-negative. There were type a cells (filamentous to bacillary with monolaminar cell wall of 19 nanometers and cross wall) and type b cells (filamentous to bacillary with monolaminar cell wall of 65 nanometers and without cross wall). The remarkable morphological differences of the three species of Actinomycetales are specific, independent from host and type of tissue, and therefore reliable for diagnostic purposes.


Sign in / Sign up

Export Citation Format

Share Document