Extracellular ATP stimulates proliferation of cultured mesangial cells via P2-purinergic receptors

1992 ◽  
Vol 263 (3) ◽  
pp. F374-F383 ◽  
Author(s):  
E. Schulze-Lohoff ◽  
S. Zanner ◽  
A. Ogilvie ◽  
R. B. Sterzel

We examined the role of the platelet product ATP in regulating replication and secretory activity of cultured rat mesangial cells (MCs). Extracellular ATP (25-100 microM) significantly increased [3H]thymidine uptake of growth-arrested MCs 2.1-fold; cell counts increased by 35.1%. Addition of ATP to MCs in combination with other platelet products, such as platelet-derived growth factor, isoform BB (100 ng/ml), and serotonin (1 microM), resulted in strong synergistic mitogenicity (up to 45.6-fold over control). As immediate signaling events following stimulation with ATP, we found increased production of inositol phosphates (3.2-fold increase for inositol bisphosphate and 1.6-fold increase for inositol trisphosphate by 30 s) and release of prostaglandin E2 (PGE2, 9.2-fold increase by 5 min). When we studied the rank order of potency of various ATP analogues for the production of inositol phosphates and PGE2, ATP, UTP, and adenosine 5'-O-(3-thio)triphosphate (ATP gamma S) were the most potent agonists. Although ATP and ATP gamma S were also strong mitogens, UTP was not. Additional inhibitor studies indicated that protein kinase C or cyclooxygenase products were not involved in the mitogenic effects of ATP. In summary, the major platelet product ATP is a potent comitogen for cultured MCs and strongly synergizes with other growth factors. The experiments with ATP analogues point to different receptors mediating mitogenesis, generation of inositol phosphates, and PGE2 production. The precise mechanism of the mitogenic action of ATP on MCs remains to be characterized.

1988 ◽  
Vol 91 (1) ◽  
pp. 1-27 ◽  
Author(s):  
D D Friel ◽  
B P Bean

Currents activated by extracellular ATP were studied in single voltage-clamped bullfrog atrial cells. Rapid application of ATP elicited currents carried through two different conductance pathways: a rapidly desensitizing conductance reversing near -10 mV, and a maintained, inwardly rectifying conductance reversing near -85 mV. ATP activated the desensitizing component of current with a K 1/2 of approximately 50 microM and the maintained component with a K 1/2 of approximately 10 microM. Both types of current were activated by ATP but not by adenosine, AMP, or ADP. The desensitizing current was selectively inhibited by alpha, beta-methylene ATP, and the maintained, inwardly rectifying current was selectively suppressed by extracellular Cs. The desensitizing component of current was greatly reduced when extracellular Na was replaced by N-methylglucamine, but was slightly augmented when Na was replaced by Cs. GTP, ITP, and UTP were all ineffective in activating the desensitizing current, and of a variety of ATP analogues, only ATP-gamma-S was effective. Addition of EGTA or BAPTA to the intracellular solution did not obviously affect the desensitizing current. Fluctuation analysis of currents through the desensitizing conductance suggested that current is carried through ionic channels with a small (less than pS) unitary conductance.


1998 ◽  
Vol 275 (6) ◽  
pp. F962-F971 ◽  
Author(s):  
Eckhard Schulze-Lohoff ◽  
Christian Hugo ◽  
Sylvia Rost ◽  
Susanne Arnold ◽  
Angela Gruber ◽  
...  

Mesangial cells undergo cell death both by apoptosis and necrosis during glomerular disease. Since nucleotides are released from injured and destroyed cells in the glomerulus, we examined whether extracellular ATP and its receptors may regulate cell death of cultured mesangial cells. Addition of extracellular ATP (300 μM to 5 mM) to cultured rat mesangial cells for 90 min caused a 5.8-fold increase in DNA fragmentation (terminal deoxynucleotidyl transferase assay) and a 4.2-fold increase in protein levels of the tumor suppressor p53, which is thought to regulate apoptosis. Apoptotic DNA fragmentation was confirmed by the diphenylamine assay and by staining with the DNA-specific fluorochrome Hoechst 33258. The necrotic markers, release of lactate dehydrogenase and uptake of trypan blue, were not positive before 3 h of ATP addition. The effects of ATP on DNA fragmentation and p53 expression were reproduced by the purinergic P2Z/P2X7 receptor agonist, 3′- O-(4-benzoylbenzoyl)-ATP, and inhibited by the P2Z/P2X7 receptor blocker, oxidized ATP. Transcripts encoding the P2Z/P2X7 receptor were expressed by cultured mesangial cells as determined by Northern blot analysis. P2Z/P2X7 receptor-associated pore formation in the plasma membrane was demonstrated by the Lucifer yellow assay. We conclude that activation of P2Z/P2X7 receptors by extracellular ATP causes apoptosis and necrosis of cultured mesangial cells. Activation of purinergic P2Z/P2X7 receptors may play a role in causing death of mesangial cells during glomerular disease.


1993 ◽  
Vol 265 (2) ◽  
pp. G361-G369 ◽  
Author(s):  
M. J. Rutten ◽  
P. J. Dempsey ◽  
T. E. Solomon ◽  
R. J. Coffey

Transforming growth factor-alpha (TGF-alpha) and epidermal growth factor (EGF) are thought to be important in gastric epithelial proliferation and repair. It was therefore of interest to determine if TGF-alpha and EGF promoted the growth of an in vitro primary culture system of guinea pig gastric mucous epithelial cells (MEC). MEC were isolated from guinea pig stomachs and cultured in 24-well Primaria plates with DMEM with or without 10% fetal calf serum (FCS). Growth of MEC was determined by changes in [3H]thymidine uptake, cell counts, protein, and DNA. The sources of peptides were human recombinant TGF-alpha (recTGF-alpha) and human recombinant EGF (recEGF). Both recTGF-alpha and recEGF were used at equipotent doses as determined by competing activity in a 125I-labeled TGF-alpha radioreceptor binding assay using A-431 cells. Basal growth (no peptides) of MEC in 10% FCS was dependent on the initial plating density. Under serum-free conditions, [3H]thymidine uptake increased up to 17-fold at 24 h with recTGF-alpha (0.1-10.0 nM) compared with only a 4-fold increase using rec-EGF (0.1-10.0 nM) at this same time period. Under serum-free conditions, recTGF-alpha (0.01-10.0 nM) increased cell counts up to 4.9-fold over control cultures, whereas similar does of recEGF produced a 2.5-fold increase in cell counts. Administration of recEGF 1 ng/ml) resulted in a 1.9-fold increase in the 4.8-kb TGF-alpha mRNA transcript, and TGF-alpha protein immunoreactivity was found in both 24-h conditioned media and cell lysates.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 105 (1) ◽  
pp. 191-197 ◽  
Author(s):  
T W Howell ◽  
S Cockcroft ◽  
B D Gomperts

Rat mast cells, pretreated with metabolic inhibitors and permeabilized by streptolysin-O, secrete histamine when provided with Ca2+ (buffered in the micromolar range) and nucleoside triphosphates. We have surveyed the ability of various exogenous nucleotides to support or inhibit secretion. The preferred rank order in support of secretion is ITP greater than XTP greater than GTP much greater than ATP. Pyrimidine nucleotides (UTP and CTP) are without effect. Nucleoside diphosphates included alongside Ca2+ plus ITP inhibit secretion in the order 2'-deoxyGDP greater than GDP greater than o-GDP greater than ADP approximately equal to 2'deoxyADP approximately equal to IDP. Secretion from the metabolically inhibited and permeabilized cells can also be induced by stable analogues of GTP (GTP-gamma-S greater than GppNHp greater than GppCH2p) which synergize with Ca2+ to trigger secretion in the absence of phosphorylating nucleotides. ATP enhances the effective affinity for Ca2+ and GTP analogues in the exocytotic process but does not alter the maximum extent of secretion. The results suggest that the presence of Ca2+ combined with activation of events controlled by a GTP regulatory protein provide a sufficient stimulus to exocytotic secretion from mast cells.


2017 ◽  
Vol 474 (8) ◽  
pp. 1395-1416 ◽  
Author(s):  
Cora Lilia Alvarez ◽  
Gerardo Corradi ◽  
Natalia Lauri ◽  
Irene Marginedas-Freixa ◽  
María Florencia Leal Denis ◽  
...  

We studied the kinetics of extracellular ATP (ATPe) in Escherichia coli and their outer membrane vesicles (OMVs) stimulated with amphipatic peptides melittin (MEL) and mastoparan 7 (MST7). Real-time luminometry was used to measure ATPe kinetics, ATP release, and ATPase activity. The latter was also determined by following [32P]Pi released from [γ-32P]ATP. E. coli was studied alone, co-incubated with Caco-2 cells, or in rat jejunum segments. In E. coli, the addition of [γ-32P]ATP led to the uptake and subsequent hydrolysis of ATPe. Exposure to peptides caused an acute 3-fold (MST7) and 7-fold (MEL) increase in [ATPe]. In OMVs, ATPase activity increased linearly with [ATPe] (0.1–1 µM). Exposure to MST7 and MEL enhanced ATP release by 3–7 fold, with similar kinetics to that of bacteria. In Caco-2 cells, the addition of ATP to the apical domain led to a steep [ATPe] increase to a maximum, with subsequent ATPase activity. The addition of bacterial suspensions led to a 6–7 fold increase in [ATPe], followed by an acute decrease. In perfused jejunum segments, exposure to E. coli increased luminal ATP 2 fold. ATPe regulation of E. coli depends on the balance between ATPase activity and ATP release. This balance can be altered by OMVs, which display their own capacity to regulate ATPe. E. coli can activate ATP release from Caco-2 cells and intestinal segments, a response which in vivo might lead to intestinal release of ATP from the gut lumen.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Yogapriya Sundaresan ◽  
Muthukkaruppan Veerappan ◽  
Krishnadas Subbiah Ramasamy ◽  
Gowri Priya Chidambaranathan

Abstract Background Loss of cells in the human trabecular meshwork (TM) has been reported with ageing and in glaucoma. This study aims to identify, quantify and determine the age-related changes of human TM stem cells (TMSCs). Methods Isolation of TM cells/ paraffin sectioning was carried out using human corneoscleral rings and whole globes. The TM cells/ sections were immunostained for the stem cell markers ATP-binding cassette protein G2 (ABCG2), nerve growth factor receptor p75 and AnkyrinG (AnkG). Images were acquired using Leica SP8 confocal microscope. The isolated cells were analyzed for two parameters- ABCG2 expression and nucleus to cytoplasmic ratio (N/C ratio). The total number of TM cells and those positive for ABCG2 and p75 in each section were quantified. Spearman rank order correlation was used to determine the association between age and the cell counts. Results The TMSCs were identified based on two parameters- high ABCG2 expression and high N/C ratio > 0.7. These stem cells were also positive for p75 and AnkG. The TMSC content based on the two parameters was 21.0 ± 1.4% in < 30 years age group, 12.6 ± 6.6% in 30–60 years and 4.0 ± 3.5% in > 60 years. The stem cells with high ABCG2 and p75 expression were restricted to the Schwalbe’s line region of the TM. A significant correlation was observed between the reduction in TMSC content and TM cell count during ageing. Conclusion The human TMSCs were identified and quantified based on two parameter analysis. This study established a significant association between age-related reduction in TMSC content and TM cell loss.


2004 ◽  
Vol 286 (4) ◽  
pp. G538-G546 ◽  
Author(s):  
David Gatof ◽  
Gordan Kilic ◽  
J. Gregory Fitz

Extracellular ATP is a potent autocrine/paracrine signal that regulates a broad range of liver functions through activation of purinergic receptors. In biliary epithelium, increases in cell volume stimulate ATP release through a phosphoinositide 3-kinase (PI3-kinase)-dependent mechanism. Because PI3-kinase also regulates vesicular exocytosis, the purpose of these studies was to determine whether volume-stimulated vesicular exocytosis contributes to cellular ATP release. In a human cholangiocarcinoma cell line, exocytosis was measured by using the plasma membrane marker FM1–43, whereas ATP release was assessed by using a luciferase-luciferin assay. Under basal conditions, cholangiocytes exhibited constitutive exocytosis at a rate of 1.6%/min, and low levels of extracellular ATP were detected at 48.2 arbitrary light units. Increases in cholangiocyte cell volume induced by hypotonic exposure resulted in a 10-fold increase in the rate of exocytosis and a robust 35-fold increase in ATP release. Both vesicular exocytosis and ATP release were proportional to cell volume, and both exhibited similar regulatory properties including: 1) dependence on intact PI3-kinase, 2) attenuation by inhibition of PKC, and 3) potentiation by activation of PKC before hypotonic exposure. These findings demonstrate that increases in cholangiocyte cell volume stimulate ATP release and vesicular exocytosis through similar regulatory paradigms. Functional interactions among cell volume, PKC, and PI3-kinase modulate exocytosis, thereby regulating ATP release and purinergic signaling in cholangiocytes. It is hypothesized that PKC is involved in the recruitment of a volume-sensitive vesicular pool to a readily releasable state.


2019 ◽  
Vol 86 (2) ◽  
pp. 217-221 ◽  
Author(s):  
Vittorio Tedde ◽  
Valerio Bronzo ◽  
Giulia Maria Grazia Puggioni ◽  
Claudia Pollera ◽  
Antonio Casula ◽  
...  

AbstractThis research communication reports the evaluation of cathelicidin in dairy goat milk for its relationship with the somatic cell count (SCC) and microbial culture results. Considering the limited performances of SCC for mastitis monitoring in goats, there is interest in evaluating alternative diagnostic tools. Cathelicidin is an antimicrobial protein involved in innate immunity of the mammary gland. In this work, half-udder milk was sampled bimonthly from a herd of 37 Alpine goats along an entire lactation and tested with the cathelicidin ELISA together with SCC and bacterial culture. Cathelicidin and SCC showed a strong correlation (r = 0.72; n = 360 milk samples). This was highest in mid-lactation (r = 0.83) and lowest in late lactation (r = 0.61), and was higher in primiparous (0.80, n = 130) than in multiparous goats (0.71, n = 230). Both markers increased with stage of lactation, but cathelicidin increased significantly less than SCC. In addition, peak level in late lactation was lower for cathelicidin (5.05-fold increase) than for SCC (7.64-fold increase). Twenty-one (5.8%) samples were positive to bacteriological culture, 20 for coagulase-negative staphylococci and one for Streptococcus spp.; 18 of them were positive to the cathelicidin ELISA (85.71% sensitivity). Sensitivity of SCC >500 000 and of SCC >1 000 000 cells/ml was lower (71.43 and 23.81%, respectively). Therefore, the high correlation of cathelicidin with SCC during the entire lactation, along with its lower increase in late lactation and good sensitivity in detecting intramammary infection (IMI), indicate a potential for monitoring subclinical mastitis in dairy goats. However, based on this preliminary assessment, specificity should be improved (40.41% for cathelicidin vs. 54.57 and 67.85% for SCC >500 000 and >1 000 000 cells/ml, respectively). Therefore, the application of cathelicidin for detecting goat IMI will require further investigation and optimization, especially concerning the definition of diagnostic thresholds.


Sign in / Sign up

Export Citation Format

Share Document