Frequency domain of renal autoregulation in the conscious dog

1995 ◽  
Vol 269 (3) ◽  
pp. F317-F322 ◽  
Author(s):  
U. Wittmann ◽  
B. Nafz ◽  
H. Ehmke ◽  
H. R. Kirchheim ◽  
P. B. Persson

The dynamic range in which renal blood flow (RBF) autoregulation occurs was determined in eight conscious foxhounds chronically catheterized in the abdominal aorta and implanted with a transit-time flow probe over the renal artery. Sinusoidal driving pressures (amplitude of 10 mmHg) were forced on the renal arterial pressure at different frequencies by a servo-control device, and transfer functions were calculated. Only one frequency range was found below which the gain of the transfer function declined and in which the phase angle increased (n = 8). This indicates the presence of a potent mechanism for renal autoregulation in the examined frequency range between 0.0031 and 0.08 Hz, which buffers changes in blood flow < 0.02 Hz. After furosemide treatment, one indicator for autoregulation (phase shift of transfer function) was significantly blunted at low frequencies (n = 6). Furosemide, however, did not reduce the phase shift to zero, suggesting that some autoregulation still remained in the frequency range between 0.04 and 0.08 Hz. In conclusion, autoregulation of RBF during sinusoidal changes in driving pressure between 0.0031 and 0.02 Hz is mediated by a single mechanism, which can be blocked by the acute administration of furosemide. The residual phase shift between arterial pressure and RBF in the transfer function observed during sinusoidal changes in driving pressure between 0.04 and 0.08 Hz suggests the presence of a second mechanism for RBF autoregulation.

1998 ◽  
Vol 274 (1) ◽  
pp. H233-H241 ◽  
Author(s):  
Rong Zhang ◽  
Julie H. Zuckerman ◽  
Cole A. Giller ◽  
Benjamin D. Levine

To test the hypothesis that spontaneous changes in cerebral blood flow are primarily induced by changes in arterial pressure and that cerebral autoregulation is a frequency-dependent phenomenon, we measured mean arterial pressure in the finger and mean blood flow velocity in the middle cerebral artery (V˙MCA) during supine rest and acute hypotension induced by thigh cuff deflation in 10 healthy subjects. Transfer function gain, phase, and coherence function between changes in arterial pressure andV˙MCA were estimated using the Welch method. The impulse response function, calculated as the inverse Fourier transform of this transfer function, enabled the calculation of transient changes inV˙MCA during acute hypotension, which was compared with the directly measured change in V˙MCA during thigh cuff deflation. Beat-to-beat changes inV˙MCA occurred simultaneously with changes in arterial pressure, and the autospectrum of V˙MCA showed characteristics similar to arterial pressure. Transfer gain increased substantially with increasing frequency from 0.07 to 0.20 Hz in association with a gradual decrease in phase. The coherence function was >0.5 in the frequency range of 0.07–0.30 Hz and <0.5 at <0.07 Hz. Furthermore, the predicted change inV˙MCA was similar to the measuredV˙MCA during thigh cuff deflation. These data suggest that spontaneous changes inV˙MCA that occur at the frequency range of 0.07–0.30 Hz are related strongly to changes in arterial pressure and, furthermore, that short-term regulation of cerebral blood flow in response to changes in arterial pressure can be modeled by a transfer function with the quality of a high-pass filter in the frequency range of 0.07–0.30 Hz.


2008 ◽  
Vol 295 (3) ◽  
pp. R821-R828 ◽  
Author(s):  
Ki H. Chon ◽  
Yuru Zhong ◽  
Leon C. Moore ◽  
Niels H. Holstein-Rathlou ◽  
William A. Cupples

The extent to which renal blood flow dynamics vary in time and whether such variation contributes substantively to dynamic complexity have emerged as important questions. Data from Sprague-Dawley rats (SDR) and spontaneously hypertensive rats (SHR) were analyzed by time-varying transfer functions (TVTF) and time-varying coherence functions (TVCF). Both TVTF and TVCF allow quantification of nonstationarity in the frequency ranges associated with the autoregulatory mechanisms. TVTF analysis shows that autoregulatory gain in SDR and SHR varies in time and that SHR exhibit significantly more nonstationarity than SDR. TVTF gain in the frequency range associated with the myogenic mechanism was significantly higher in SDR than in SHR, but no statistical difference was found with tubuloglomerular (TGF) gain. Furthermore, TVCF analysis revealed that the coherence in both strains is significantly nonstationary and that low-frequency coherence was negatively correlated with autoregulatory gain. TVCF in the frequency range from 0.1 to 0.3 Hz was significantly higher in SDR (7 out of 7, >0.5) than in SHR (5 out of 6, <0.5), and consistent for all time points. For TGF frequency range (0.03–0.05 Hz), coherence exhibited substantial nonstationarity in both strains. Five of six SHR had mean coherence (<0.5), while four of seven SDR exhibited coherence (<0.5). Together, these results demonstrate substantial nonstationarity in autoregulatory dynamics in both SHR and SDR. Furthermore, they indicate that the nonstationarity accounts for most of the dynamic complexity in SDR, but that it accounts for only a part of the dynamic complexity in SHR.


2001 ◽  
Vol 281 (3) ◽  
pp. R716-R722 ◽  
Author(s):  
K. Narayanan ◽  
James J. Collins ◽  
Jason Hamner ◽  
Seiji Mukai ◽  
Lewis A. Lipsitz

The transfer function relating arterial pressure (AP) to cerebral blood flow velocity (CBFV) during resting conditions has been used to predict the CBFV response to hypotension. We hypothesized that this approach could predict the CBFV response to posture change in elderly individuals if impaired autoregulation allowed changes in AP to be passively transferred to CBFV. AP (Finapres) and CBFV (middle cerebral artery transcranial Doppler) were measured in 10 healthy young (age 24 ± 1 yr) and 10 healthy elderly (age 72 ± 3 yr) subjects during 5 min of quiet sitting and 1 min of active standing while breathing was paced at 0.25 Hz. Transfer functions between AP and CBFV changes during sitting were estimated from each full waveform in both low-frequency (LF; 0.05–0.2 Hz) and heartbeat-frequency (HBF; 0.7–1.4 Hz) ranges. The impulse-response function was used to compute changes in CBFV during posture change. The LF transfer function did not predict orthostatic changes in CBFV in either group, suggesting normal cerebral autoregulation. In the HBF range, the prediction was high in elderly ( R = 0.65 ± 0.23) but not young subjects ( R = 0.19 ± 0.35; P < 0.003, young vs. elderly). Thus rapidly acting regulatory mechanisms that reduce the transmission of beat-to-beat changes in AP to CBFV may be engaged during posture change in young but not elderly subjects.


1991 ◽  
Vol 34 (2) ◽  
pp. 427-438 ◽  
Author(s):  
Gerald A. Studebaker ◽  
Robert L. Sherbecoe

Frequency-importance and transfer functions for the Technisonic Studios’ recordings of the CID W-22 word test are reported. These functions may be used to calculate Articulation Index (Al) values or to predict scores on the W-22 test. The functions were derived from the word recognition scores of 8 normal-hearing listeners who were tested under 308 conditions of filtering and masking. The importance function for the W-22 test has a broader frequency range and a different shape than the importance function used in the current ANSI standard on the Articulation Index (ANSI, 1969). The transfer function is similar in slope to to the ANSI transfer function for 256 PB-words, but is shifted to the right of that function by 0.05 Al.


2003 ◽  
Vol 105 (2) ◽  
pp. 219-225 ◽  
Author(s):  
Geoffrey C. CLOUD ◽  
Chakravarthi RAJKUMAR ◽  
Jaspal KOONER ◽  
Jonathan COOKE ◽  
Christopher J. BULPITT

Central arterial pressure, measured close to the heart, may be of more patho-physiological importance than conventional non-invasive cuff blood pressure. The technique of applanation tonometry using SphygmoCor® has been proposed as a non-invasive method of estimating central pressure. This relies on mathematically derived generalized transfer functions, which have been previously validated using invasive peripheral pressure measurements. We compared simultaneous estimates of central aortic pressure using this technique with those measured directly during the routine diagnostic cardiac catheterization of 30 subjects (age range 27–84 years), half of whom were aged 65 years or more. This was done by applanating the left radial artery and recording the non-invasive brachial cuff blood pressure to generate a central aortic pressure estimate, using the SphygmoCor® radial transfer function. The comparative results were analysed using Bland—Altman plots of mean difference. SphygmoCor®, on average, underestimated systolic central arterial pressure by 13.3 mmHg and overestimated diastolic pressure by 11.5 mmHg. The results were similar in patients aged under and above 65 years. Furthermore, non-invasively measured brachial pressures were seen to give an overall closer estimate of the central arterial pressure than the SphygmoCor® system. The transfer function has been validated from invasively measured arterial pressures and the current use by the system of non-invasive measures may explain the discrepancies. However, age, drugs and arterial disease would also be expected to play a role.


2008 ◽  
Vol 104 (2) ◽  
pp. 490-498 ◽  
Author(s):  
Philip N. Ainslie ◽  
Shigehiko Ogoh ◽  
Katie Burgess ◽  
Leo Celi ◽  
Ken McGrattan ◽  
...  

We hypothesized that 1) acute severe hypoxia, but not hyperoxia, at sea level would impair dynamic cerebral autoregulation (CA); 2) impairment in CA at high altitude (HA) would be partly restored with hyperoxia; and 3) hyperoxia at HA and would have more influence on blood pressure (BP) and less influence on middle cerebral artery blood flow velocity (MCAv). In healthy volunteers, BP and MCAv were measured continuously during normoxia and in acute hypoxia (inspired O2 fraction = 0.12 and 0.10, respectively; n = 10) or hyperoxia (inspired O2 fraction, 1.0; n = 12). Dynamic CA was assessed using transfer-function gain, phase, and coherence between mean BP and MCAv. Arterial blood gases were also obtained. In matched volunteers, the same variables were measured during air breathing and hyperoxia at low altitude (LA; 1,400 m) and after 1–2 days after arrival at HA (∼5,400 m, n = 10). In acute hypoxia and hyperoxia, BP was unchanged whereas it was decreased during hyperoxia at HA (−11 ± 4%; P < 0.05 vs. LA). MCAv was unchanged during acute hypoxia and at HA; however, acute hyperoxia caused MCAv to fall to a greater extent than at HA (−12 ± 3 vs. −5 ± 4%, respectively; P < 0.05). Whereas CA was unchanged in hyperoxia, gain in the low-frequency range was reduced during acute hypoxia, indicating improvement in CA. In contrast, HA was associated with elevations in transfer-function gain in the very low- and low-frequency range, indicating CA impairment; hyperoxia lowered these elevations by ∼50% ( P < 0.05). Findings indicate that hyperoxia at HA can partially improve CA and lower BP, with little effect on MCAv.


2020 ◽  
Author(s):  
Ali-Kemal Aydin ◽  
William D. Haselden ◽  
Julie Dang ◽  
Patrick J. Drew ◽  
Serge Charpak ◽  
...  

1.AbstractUnderstanding the relationships between biological events is paramount to unravel pathophysiological mechanisms. These relationships can be modeled with Transfer Functions (TFs), with no need of a priori hypotheses as to the shape of the transfer function. Here we present Iliski, a software dedicated to TFs computation between two signals. It includes different pre-treatment routines and TF computation processes: deconvolution, deterministic and non-deterministic optimization algorithms that are adapted to disparate datasets. We apply Iliski to data on neurovascular coupling, an ensemble of biological events that link neuronal activity to local changes of blood flow, highlighting the software benefits and caveats in the computation and evaluation of TFs. We also propose a workflow that will help users to choose the best computation according to the dataset. Iliski is available under the open-source license CC BY 4.0 on GitLab (https://gitlab.com/AliK_A/iliski) and can be used on the most common operating systems, either within the MATLAB environment, or as a standalone application.


2008 ◽  
Vol 109 (4) ◽  
pp. 642-650 ◽  
Author(s):  
Yojiro Ogawa ◽  
Ken-ichi Iwasaki ◽  
Ken Aoki ◽  
Wakako Kojima ◽  
Jitsu Kato ◽  
...  

Background Dexmedetomidine, which is often used in intensive care units in patients with compromised circulation, might induce further severe decreases in cerebral blood flow (CBF) with temporal decreases in arterial pressure induced by various stimuli if dynamic cerebral autoregulation is not improved. Therefore, the authors hypothesized that dexmedetomidine strengthens dynamic cerebral autoregulation. Methods Fourteen healthy male subjects received placebo, low-dose dexmedetomidine (loading, 3 microg x kg(-1) x h(-1) for 10 min; maintenance, 0.2 microg x kg(-1) x h(-1) for 60 min), and high-dose dexmedetomidine (loading, 6 microg x kg(-1) x h(-1) for 10 min; maintenance, 0.4 microg x kg(-1) x h(-1) for 60 min) infusions in a randomized, double-blind, crossover study. After 70 min of drug administration, dynamic cerebral autoregulation was estimated by transfer function analysis between arterial pressure variability and CBF velocity variability, and the thigh cuff method. Results Compared with placebo, steady state CBF velocity and mean blood pressure significantly decreased during administration of dexmedetomidine. Transfer function gain in the very-low-frequency range increased and phase in the low-frequency range decreased significantly, suggesting alterations in dynamic cerebral autoregulation in lower frequency ranges. Moreover, the dynamic rate of regulation and percentage restoration in CBF velocity significantly decreased when a temporal decrease in arterial pressure was induced by thigh cuff release. Conclusion Contrary to the authors' hypothesis, the current results of two experimental analyses suggest together that dexmedetomidine weakens dynamic cerebral autoregulation and delays restoration in CBF velocity during conditions of decreased steady state CBF velocity. Therefore, dexmedetomidine may lead to further sustained reductions in CBF during temporal decreases in arterial pressure.


2002 ◽  
Vol 282 (3) ◽  
pp. H1149-H1156 ◽  
Author(s):  
Toru Kawada ◽  
Can Zheng ◽  
Yusuke Yanagiya ◽  
Kazunori Uemura ◽  
Tadayoshi Miyamoto ◽  
...  

A transfer function from baroreceptor pressure input to sympathetic nerve activity (SNA) shows derivative characteristics in the frequency range below 0.8 Hz in rabbits. These derivative characteristics contribute to a quick and stable arterial pressure (AP) regulation. However, if the derivative characteristics hold up to heart rate frequency, the pulsatile pressure input will yield a markedly augmented SNA signal. Such a signal would saturate the baroreflex signal transduction, thereby disabling the baroreflex regulation of AP. We hypothesized that the transfer gain at heart rate frequency would be much smaller than that predicted from extrapolating the derivative characteristics. In anesthetized rabbits ( n = 6), we estimated the neural arc transfer function in the frequency range up to 10 Hz. The transfer gain was lost at a rate of −20 dB/decade when the input frequency exceeded 0.8 Hz. A numerical simulation indicated that the high-cut characteristics above 0.8 Hz were effective to attenuate the pulsatile signal and preserve the open-loop gain when the baroreflex dynamic range was finite.


2014 ◽  
Vol 306 (6) ◽  
pp. R411-R419 ◽  
Author(s):  
Aso Saeed ◽  
Gerald F. DiBona ◽  
Elisabeth Grimberg ◽  
Lisa Nguy ◽  
Minne Line Nedergaard Mikkelsen ◽  
...  

This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06–0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. −4.4 ± 3.8 dB; P < 0.05). Similarly, a high-NaCl diet significantly increased SAPV in the low-frequency range only in ACRF animals. To conclude, a 2-wk period of a high-NaCl diet in ACRF rats significantly impaired dynamic RBFA in the frequency range of the myogenic response and increased SAPV in the low-frequency range. These abnormalities may increase the susceptibility to hypertensive end-organ injury and progressive renal failure by facilitating pressure transmission to the microvasculature.


Sign in / Sign up

Export Citation Format

Share Document