Metanephric osteopontin regulates nephrogenesis in vitro

1997 ◽  
Vol 272 (4) ◽  
pp. F469-F476 ◽  
Author(s):  
S. A. Rogers ◽  
B. J. Padanilam ◽  
K. A. Hruska ◽  
C. M. Giachelli ◽  
M. R. Hammerman

Renal expression of osteopontin is enhanced in the setting of acute ischemic injury. Because of the parallels that exist between recovery from renal ischemia and renal development, we characterized the role that osteopontin plays during metanephrogenesis in the rat. Osteopontin mRNA is present in kidneys obtained from rat embryos as early as embryonic day 13 (E13). Immunohistochemical staining of metanephroi obtained from E16 rat embryos and metanephroi obtained from E13 embryos and cultured for 3 days in vitro demonstrated that osteopontin is expressed both in the developing nephron and in the ureteric bud. Addition of anti-osteopontin antibodies to metanephric organ cultures results in failure of the metanephric blastema to undergo normal tubulogenesis. Addition of the arginine-glycine-aspartic acid-containing peptide, cyclo-RGDfV, or the anti-alpha(v)beta3-integrin antibody, LM609, to cultures has a similar effect. These findings establish that osteopontin is produced within the rat metanephros during development in vivo and suggest that the binding of osteopontin to the alpha(v)beta3-integrin is required for tubulogenesis to occur in vitro. Blastemal cells within metanephroi cultured in the presence of OP199 manifest increased apoptosis compared with controls. It is possible that osteopontin plays an important anti-apoptotic role during the process of metanephric blastema condensation that is a prerequisite for the formation of nephrons in vivo.

Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3207-3214 ◽  
Author(s):  
J. Qiao ◽  
D. Cohen ◽  
D. Herzlinger

The kidney forms from two tissue populations derived from intermediate mesoderm, the ureteric bud and metanephric mesenchyme. It is currently accepted that metanephric mesenchyme is committed to differentiating into nephrons while the ureteric bud is restricted to forming the renal collecting system. To test this hypothesis, we transferred lacZ into pure metanephric mesenchyme isolated from gestation day 13 rat embryos. The fate of tagged mesenchymal cells and their progeny was characterized after co-culture with isolated ureteric buds. When induced to differentiate by the native inducer of kidney morphogenesis, lineage-tagged mesenchymal cells exhibit the potential to differentiate into collecting system epithelia, in addition to nephrons. The fate of cells deriving from isolated ureteric buds was also examined and results of these lacZ gene transfer experiments indicate that the majority of ureteric bud cells differentiate into the renal collecting system. These cell fate studies combined with in situ morphological observations raise the possibility that collecting system morphogenesis in vivo occurs by growth of the ureteric bud and recruitment of mesenchymal cells from the metanephric blastema. Thus, metanephric mesenchyme may be a pluripotent renal stem population.


1993 ◽  
Vol 264 (6) ◽  
pp. F996-F1002 ◽  
Author(s):  
S. A. Rogers ◽  
G. Ryan ◽  
A. F. Purchio ◽  
M. R. Hammerman

Development of the metanephric kidney during embryogenesis is regulated by a number of polypeptide growth factors of renal origin. We have defined previously a role for insulin-like growth factors (IGF) I and II and for transforming growth factor (TGF)-alpha. To delineate the effect of TGF-beta 1, on renal organogenesis, we cultured metanephroi surgically dissected from 13-day-old rat embryos in serum-free chemically defined media. TGF-beta 1 mRNA was present in kidneys from 13-day-old rat embryos, and positive immunostaining for TGF-beta 1 could be demonstrated in cultured metanephroi. However, TGF-beta bioactivity could not be detected in media obtained from the metanephroi. Addition of 10(-9) M TGF-beta 1 to cultures inhibited tubulogenesis, but had no effect on synthesis of IGF-I or -II. Addition of anti-TGF-beta 1 antibodies to cultures accelerated tubulogenesis within the metanephric blastema. These findings establish the potential for TGF-beta 1 production within the rat metanephros during development in vivo. It is possible that this peptide exerts a negative control on the process of tubulogenesis within metanephric blastema and in this manner acts to shape the architecture of mature kidney.


Development ◽  
1987 ◽  
Vol 100 (3) ◽  
pp. 431-439 ◽  
Author(s):  
S.K. Ellington

The glucose metabolism and embryonic development of rat embryos during organogenesis was studied using embryo culture. Glucose uptake and embryonic growth and differentiation of 10.5-day explants (embryos + membranes) were limited by the decreasing glucose concentration, but not the increasing concentration of metabolites, in the culture media during the second 24 h of a 48 h culture. No such limitations were found on the embryonic development of 9.5-day explants during a 48 h culture although glucose uptake was slightly reduced at very low concentrations of glucose. From the head-fold stage to the 25-somite stage of development, glucose uptake was characteristic of the stage of development of the embryo and not the time it had been in culture. Embryonic growth of 9.5-day explants was similar to that previously observed in vivo. Glucose uptake by 9.5-day explants was dependent on the surface area of the yolk sac and was independent of the glucose concentration in the culture media (within the range of 9.4 to 2.5 mM). The proportion of glucose converted to lactate was 100% during the first 42h of culture then fell to about 50% during the final 6h. The protein contents of both the extraembryonic membranes and the embryo were dependent on the glucose uptake.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 404 ◽  
Author(s):  
Takuya Miyagawa ◽  
Zhi-Yu Chen ◽  
Che-Yi Chang ◽  
Ko-Hua Chen ◽  
Yang-Kao Wang ◽  
...  

Neovascularization (NV) of the cornea disrupts vision which leads to blindness. Investigation of antiangiogenic, slow-release and biocompatible approaches for treating corneal NV is of great importance. We designed an eye drop formulation containing gelatin/epigallocatechin-3-gallate (EGCG) nanoparticles (NPs) for targeted therapy in corneal NV. Gelatin-EGCG self-assembled NPs with hyaluronic acid (HA) coating on its surface (named GEH) and hyaluronic acid conjugated with arginine-glycine-aspartic acid (RGD) (GEH-RGD) were synthesized. Human umbilical vein endothelial cells (HUVECs) were used to evaluate the antiangiogenic effect of GEH-RGD NPs in vitro. Moreover, a mouse model of chemical corneal cauterization was employed to evaluate the antiangiogenic effects of GEH-RGD NPs in vivo. GEH-RGD NP treatment significantly reduced endothelial cell tube formation and inhibited metalloproteinase (MMP)-2 and MMP-9 activity in HUVECs in vitro. Topical application of GEH-RGD NPs (once daily for a week) significantly attenuated the formation of pathological vessels in the mouse cornea after chemical cauterization. Reduction in both vascular endothelial growth factor (VEGF) and MMP-9 protein in the GEH-RGD NP-treated cauterized corneas was observed. These results confirm the molecular mechanism of the antiangiogenic effect of GEH-RGD NPs in suppressing pathological corneal NV.


2020 ◽  
Vol 24 (10) ◽  
pp. 3425-3436 ◽  
Author(s):  
Sebastian Blatt ◽  
Valentin Burkhardt ◽  
Peer W. Kämmerer ◽  
Andreas M. Pabst ◽  
Keyvan Sagheb ◽  
...  

Abstract Objectives Porcine-derived collagen matrices (CM) can be used for oral tissue regeneration, but sufficient revascularization is crucial. The aim of this study was to analyze the influence of platelet-rich fibrin (PRF) on angiogenesis of different CM in vitro and in vivo. Materials and methods Three different CM (mucoderm, jason, collprotect) were combined with PRF in a plotting process. Growth factor release (VEGF, TGF-β) was measured in vitro via ELISA quantification after 1,4 and 7 days in comparison to PRF alone. In ovo yolk sac (YSM) and chorion allantois membrane (CAM) model, angiogenic potential were analyzed in vivo with light- and intravital fluorescence microscopy after 24 h, then verified with immunohistochemical staining for CD105 and αSMA. Results Highest growth factor release was seen after 24 h for all three activated membranes in comparison to the native CM (VEGF 24 h: each p < 0.05; TGF-β: each p < 0.001) and the PRF (no significant difference). All activated membranes revealed a significantly increased angiogenic potential in vivo after 24 h (vessels per mm2: each p < 0.05; branching points per mm2: each p < 0.01; vessel density: each p < 0.05) and with immunohistochemical staining for CD105 (each p < 0.01) and αSMA (each p < 0.05). Conclusions PRF improved the angiogenesis of CM in vitro and in vivo. Clinical relevance Bio-functionalization of CM with PRF could easily implemented in the clinical pathway and may lead to advanced soft tissue healing.


2001 ◽  
Vol 280 (6) ◽  
pp. R1865-R1869 ◽  
Author(s):  
Sharon A. Rogers ◽  
Marc R. Hammerman

To determine whether transplanted metanephroi grow and differentiate after implantation into the omentum in hosts of a different species, we implanted metanephroi from embryonic day 15 (E15) rat embryos into uninephrectomized mice (hosts). Some host mice received human CTLA4Ig (hCTLA4Ig), anti-CD45RB, and anti-CD154 (tolerance-inducing agents). E15 metanephroi contained only metanephric blastema, segments of ureteric bud, and primitive nephrons with no glomeruli. Rat metanephroi did not grow or differentiate in mice that received no tolerance-inducing agents. However, by 2 wk posttransplantation in mice that received hCTLA4Ig, anti-CD45RB, and anti-CD154, metanephroi from E15 rats had enlarged, become vascularized, and formed mature tubules and glomeruli. Rat metanephroi contained cells that stained specifically for mouse CD31, a marker for sprouting endothelial cells. Some rat glomerular capillary loops stained positively for mouse CD31. Here, we show that chimeric kidneys develop from metanephroi transplanted rat→mouse and that glomeruli are vascularized, at least in part, by host vessels.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Xiu-Li Ding ◽  
Ya-Nan Man ◽  
Jian Hao ◽  
Cui-Hong Zhu ◽  
Chang Liu ◽  
...  

Objective. To study the antilymphangiogenesis effect of Gekko Sulfated Glycopeptide (GSPP) on human lymphatic endothelial cells (hLECs).Methods. MTS was conducted to confirm the antiproliferation effect of GSPP on hLECs; flow cytometry was employed to detect hLECs cycle distribution; the antimigration effect of GSPP on hLECs was investigated by wound healing experiment and transwell experiment; tube formation assay was used to examine its inhibitory effect on the lymphangiogenesis; western blotting was conducted to detect the expression of extracellular signal-regulated kinase1/2 (Erk1/2) and p-Erk1/2 after GSPP and basic fibroblast growth factor (bFGF) treatment. Nude mice models were established to investigate the antitumor effect of GSPP in vivo. Decreased lymphangiogenesis caused by GSPP in vivo was verified by immunohistochemical staining.Results. In vitro, GSPP (10 μg/mL, 100 μg/mL) significantly inhibited bFGF-induced hLECs proliferation, migration, and tube-like structure formation (P<0.05) and antagonized the phosphorylation activation of Erk1/2 induced by bFGF. In vivo, GSPP treatment (200 mg/kg/d) not only inhibited the growth of colon carcinoma, but also inhibited the tumor lymphangiogenesis.Conclusion. GSPP possesses the antitumor ability by inhibiting bFGF-inducing lymphangiogenesis in vitro and in vivo, which may further inhibit tumor lymphatic metastasis.


2007 ◽  
Vol 23 (1) ◽  
pp. 63-74 ◽  
Author(s):  
Mattias Gäreskog ◽  
Jonas Cederberg ◽  
Ulf J. Eriksson ◽  
Parri Wentzel

2004 ◽  
Vol 287 (4) ◽  
pp. F602-F611 ◽  
Author(s):  
Dong Chen ◽  
Richard Roberts ◽  
Martin Pohl ◽  
Sanjay Nigam ◽  
Jordan Kreidberg ◽  
...  

Inner medullary collecting ducts (IMCD) are terminally differentiated structures derived from the ureteric bud (UB). UB development is mediated by changes in the temporal and spatial expression of integrins and their respective ligands. We demonstrate both in vivo and in vitro that the UB expresses predominantly laminin receptors (α3β1-, α6β1-, and α6β4-integrins), whereas the IMCD expresses both collagen (α1β1- and α2β1-integrins) and laminin receptors. Cells derived from the IMCD, but not the UB, undergo tubulogenesis in collagen-I (CI) gels in an α1β1- and α2β1-dependent manner. UB cells transfected with the α2-integrin subunit undergo tubulogenesis in CI, suggesting that collagen receptors are required for branching morphogenesis in CI. In contrast, both UB and IMCD cells undergo tubulogenesis in CI/Matrigel gels. UB cells primarily utilize α3β1- and α6-integrins, whereas IMCD cells mainly employ α1β1 for this process. These results demonstrate a switch in integrin expression from primarily laminin receptors in the early UB to both collagen and laminin receptors in the mature IMCD, which has functional consequences for branching morphogenesis in three-dimensional cell culture models. This suggests that temporal and spatial changes in integrin expression could help organize the pattern of branching morphogenesis of the developing collecting system in vivo.


2006 ◽  
Vol 74 (12) ◽  
pp. 6907-6919 ◽  
Author(s):  
Andrea Hamilton ◽  
Carl Robinson ◽  
Iain C. Sutcliffe ◽  
Josh Slater ◽  
Duncan J. Maskell ◽  
...  

ABSTRACT Streptococcus equi is the causative agent of strangles, a prevalent and highly contagious disease of horses. Despite the animal suffering and economic burden associated with strangles, little is known about the molecular basis of S. equi virulence. Here we have investigated the contributions of a specific lipoprotein and the general lipoprotein processing pathway to the abilities of S. equi to colonize equine epithelial tissues in vitro and to cause disease in both a mouse model and the natural host in vivo. Colonization of air interface organ cultures after they were inoculated with a mutant strain deficient in the maturase lipoprotein (ΔprtM 138 - 213, with a deletion of nucleotides 138 to 213) was significantly less than that for cultures infected with wild-type S. equi strain 4047 or a mutant strain that was unable to lipidate preprolipoproteins (Δlgt 190 - 685). Moreover, mucus production was significantly greater in both wild-type-infected and Δlgt 190 - 685-infected organ cultures. Both mutants were significantly attenuated compared with the wild-type strain in a mouse model of strangles, although 2 of 30 mice infected with the Δlgt 190 - 685 mutant did still exhibit signs of disease. In contrast, only the ΔprtM 138 - 213 mutant was significantly attenuated in a pony infection study, with 0 of 5 infected ponies exhibiting pathological signs of strangles compared with 4 of 4 infected with the wild-type and 3 of 5 infected with the Δlgt 190 - 685 mutant. We believe that this is the first study to evaluate the contribution of lipoproteins to the virulence of a gram-positive pathogen in its natural host. These data suggest that the PrtM lipoprotein is a potential vaccine candidate, and further investigation of its activity and its substrate(s) are warranted.


Sign in / Sign up

Export Citation Format

Share Document