tumor lymphangiogenesis
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 17)

H-INDEX

33
(FIVE YEARS 3)

Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Jia-Mei Chen ◽  
Bo Luo ◽  
Ru Ma ◽  
Xi-Xi Luo ◽  
Yong-Shun Chen ◽  
...  

Metastasis via lymphatic vessels or blood vessels is the leading cause of death for breast cancer, and lymphangiogenesis and angiogenesis are critical prerequisites for the tumor invasion–metastasis cascade. The research progress for tumor lymphangiogenesis has tended to lag behind that for angiogenesis due to the lack of specific markers. With the discovery of lymphatic endothelial cell (LEC) markers, growing evidence demonstrates that the LEC plays an active role in lymphatic formation and remodeling, tumor cell growth, invasion and intravasation, tumor–microenvironment remodeling, and antitumor immunity. However, some studies have drawn controversial conclusions due to the variation in the LEC markers and lymphangiogenesis assessments used. In this study, we review recent findings on tumor lymphangiogenesis, the most commonly used LEC markers, and parameters for lymphangiogenesis assessments, such as the lymphatic vessel density and lymphatic vessel invasion in human breast cancer. An in-depth understanding of tumor lymphangiogenesis and LEC markers can help to illustrate the mechanisms and distinct roles of lymphangiogenesis in breast cancer progression, which will help in exploring novel potential predictive biomarkers and therapeutic targets for breast cancer.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Kunpei Fukasawa ◽  
Kako Hanada ◽  
Kei Ichikawa ◽  
Masanori Hirashima ◽  
Takahiro Takagi ◽  
...  

Abstract Background Transforming growth factor (TGF)-β is a multifunctional cytokine involved in cell differentiation, cell proliferation, and tissue homeostasis. Although TGF-β signaling is essential for maintaining blood vessel functions, little is known about the role of TGF-β in lymphatic homeostasis. Methods To delineate the role of TGF-β signaling in lymphatic vessels, TβRIIfl/fl mice were crossed with Prox1-CreERT2 mice to generate TβRIIfl/fl; Prox1-CreERT2 mice. The TβRII gene in the lymphatic endothelial cells (LECs) of the conditional knockout TβRIIiΔLEC mice was selectively deleted using tamoxifen. The effects of TβRII gene deletion on embryonic lymphangiogenesis, postnatal lymphatic structure and drainage function, tumor lymphangiogenesis, and lymphatic tumor metastasis were investigated. Results Deficiency of LEC-specific TGF-β signaling in embryos, where lymphangiogenesis is active, caused dorsal edema with dilated lymphatic vessels at E13.5. Postnatal mice in which lymphatic vessels had already been formed displayed dilation and increased bifurcator of lymphatic vessels after tamoxifen administration. Similar dilation was also observed in tumor lymphatic vessels. The drainage of FITC-dextran, which was subcutaneously injected into the soles of the feet of the mice, was reduced in TβRIIiΔLEC mice. Furthermore, Lewis lung carcinoma cells constitutively expressing GFP (LLC-GFP) transplanted into the footpads of the mice showed reduced patellar lymph node metastasis. Conclusion These data suggest that TGF-β signaling in LECs maintains the structure of lymphatic vessels and lymphatic homeostasis, in addition to promoting tumor lymphatic metastasis. Therefore, suppression of TGF-β signaling in LECs might be effective in inhibiting cancer metastasis.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4859
Author(s):  
Coralie Reger de Moura ◽  
Alexandra Landras ◽  
Farah Khayati ◽  
Uwe Maskos ◽  
Kamel Maouche ◽  
...  

Malignant melanoma is one of the most aggressive skin cancers and is characterized by early lymph node metastasis and the capacity to develop resistance to therapies. Hence, understanding the regulation of lymphangiogenesis through mechanisms contributing to lymphatic vessel formation represents a treatment strategy for metastatic cancer. We have previously shown that CD147, a transmembrane glycoprotein overexpressed in melanoma, regulates the angiogenic process in endothelial cells. In this study, we show a correlation between high CD147 expression levels and the number of lymphatic vessels expressing LYVE-1, Podoplanin, and VEGFR-3 in human melanoma lymph nodes. CD147 upregulates in vitro lymphangiogenesis and its related mediators through the PROX-1 transcription factor. In vivo studies in a melanoma model confirmed that CD147 is involved in metastasis through a similar mechanism as in vitro. This study, demonstrating the paracrine role of CD147 in the lymphangiogenesis process, suggests that CD147 could be a promising target for the inhibition of melanoma-associated lymphangiogenesis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Linlin Wang ◽  
Ling Li ◽  
Guiquan Zhu

Lymph node metastasis (LNM) of tumors is an established indicator of poor prognosis in patients. Tumor-associated lymphangiogenesis is a key step in LNM and has gained much attention. However, currently, there is no anti-tumor lymphangiogenesis drug used in clinical practice. Recently, studies on extracellular vesicles (EVs) have shown that different types of cells in the tumor microenvironment can release EVs that encapsulate a variety of molecules, including proteins, nucleic acids, and metabolites. Lymph endothelial cells (LECs) regulate tumor lymphangiogenesis through the uptake of EVs packed with different biologically active contents. In this review, we will discuss the possible mechanisms by which EVs participate in the regulation of tumor-associated lymphangiogenesis and LNM, summarize the potential value of EVs that can be used as biomarkers for the determination of tumor LNM, and indicate the potential anti-tumor lymphangiogenesis therapy.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2851
Author(s):  
Florent Morfoisse ◽  
Fabienne De Toni ◽  
Jeremy Nigri ◽  
Mohsen Hosseini ◽  
Audrey Zamora ◽  
...  

In cancer, the lymphatic system is hijacked by tumor cells that escape from primary tumor and metastasize to the sentinel lymph nodes. Tumor lymphangiogenesis is stimulated by the vascular endothelial growth factors-C (VEGFC) after binding to its receptor VEGFR-3. However, how VEGFC cooperates with other molecules to promote lymphatics growth has not been fully determined. We showed that lymphangiogenesis developed in tumoral lesions and in surrounding adipose tissue (AT). Interestingly, lymphatic vessel density correlated with an increase in circulating free fatty acids (FFA) in the lymph from tumor-bearing mice. We showed that adipocyte-released FFA are uploaded by lymphatic endothelial cells (LEC) to stimulate their sprouting. Lipidomic analysis identified the monounsaturated oleic acid (OA) as the major circulating FFA in the lymph in a tumoral context. OA transporters FATP-3, -6 and CD36 were only upregulated on LEC in the presence of VEGFC showing a collaborative effect of these molecules. OA stimulates fatty acid β-oxidation in LECs, leading to increased AT lymphangiogenesis. Our results provide new insights on the dialogue between tumors and adipocytes via the lymphatic system and identify a key role for adipocyte-derived FFA in the promotion of lymphangiogenesis, revealing novel therapeutic opportunities for inhibitors of lymphangiogenesis in cancer.


Author(s):  
Florent Morfoisse ◽  
Fabienne De Toni ◽  
Jeremy Nigri ◽  
Mohsen Hosseini ◽  
Audrey Zamora ◽  
...  

In cancer, the lymphatic system is hijacked by tumor cells to escape from primary tumor and to metastasize to the sentinel lymph nodes. Tumor lymphangiogenesis is stimulated by the vascular endothelial growth factors-C (VEGFC) after binding to its receptor VEGFR-3. However, how VEGFC cooperates with other molecules to promote lymphatic neovessels growth is not fully determined. Here, we found that tumor lymphangiogenesis developed in tumoral lesions and in their surrounding adipose tissue (AT). Interestingly, lymphatic vessel density correlated with an increase of circulating free fatty acids (FFA) in the lymph from tumor-bearing mice. We found that adipocyte-released FFA are uploaded by lymphatic endothelial cells (LEC) to stimulate their sprouting. Lipidomic analysis identified the monounsaturated oleic acid (OA) as the major circulating FFA in the lymph in tumoral context. OA transporters FATP-3, -6 and CD36 were only upregulated on LEC in the presence of VEGFC showing a collaborative effect of these molecules. OA released from adipocytes is taken up by LECs to stimulate the fatty acid β-oxidation, leading to increase adipose tissue lymphangiogenesis. Our results provide new insights on the dialogue between tumors and adipocytes via the lymphatic system and identify a key role for adipocyte-derived FFA in the promotion of lymphangiogenesis, revealing novel therapeutic opportunities for inhibitors of lymphangiogenesis in cancer.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3290
Author(s):  
Khairunnisa’ Md Yusof ◽  
Rozita Rosli ◽  
Maha Abdullah ◽  
Kelly A. Avery-Kiejda

Lymphatic vessels are regarded as the ”forgotten” circulation. Despite this, growing evidence has shown significant roles for the lymphatic circulation in normal and pathological conditions in humans, including cancers. The dissemination of tumor cells to other organs is often mediated by lymphatic vessels that serve as a conduit and is often referred to as tumor-associated lymphangiogenesis. Some of the most well-studied lymphangiogenic factors that govern tumor lymphangiogenesis are the vascular endothelial growth factor (VEGF-C/D and VEGFR-2/3), neuroplilin-2 (NRP2), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF), to name a few. However, recent findings have illustrated that non-coding RNAs are significantly involved in regulating gene expression in most biological processes, including lymphangiogenesis. In this review, we focus on the regulation of growth factors and non-coding RNAs (ncRNAs) in the lymphatic development in normal and cancer physiology. Then, we discuss the lymphangiogenic factors that necessitate tumor-associated lymphangiogenesis, with regards to ncRNAs in various types of cancer. Understanding the different roles of ncRNAs in regulating lymphatic vasculature in normal and cancer conditions may pave the way towards the development of ncRNA-based anti-lymphangiogenic therapy.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Asma Almazyad ◽  
Yao Gao ◽  
Shokoufeh Shahrabi-Farahani ◽  
Lufei Sui ◽  
Allison Gartung ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 762 ◽  
Author(s):  
Dennis Jones

Metastasis is the primary cause of cancer-related mortality. Cancer cells primarily metastasize via blood and lymphatic vessels to colonize lymph nodes and distant organs, leading to worse prognosis. Thus, strategies to limit blood and lymphatic spread of cancer have been a focal point of cancer research for several decades. Resistance to FDA-approved anti-angiogenic therapies designed to limit blood vessel growth has emerged as a significant clinical challenge. However, there are no FDA-approved drugs that target tumor lymphangiogenesis, despite the consequences of metastasis through the lymphatic system. This review highlights several of the key resistance mechanisms to anti-angiogenic therapy and potential challenges facing anti-lymphangiogenic therapy. Blood and lymphatic vessels are more than just conduits for nutrient, fluid, and cancer cell transport. Recent studies have elucidated how these vasculatures often regulate immune responses. Vessels that are abnormal or compromised by tumor cells can lead to immunosuppression. Therapies designed to improve lymphatic vessel function while limiting metastasis may represent a viable approach to enhance immunotherapy and limit cancer progression.


2020 ◽  
Author(s):  
Nikolaos Mitrousis ◽  
Maria Stella Sasso ◽  
Ralph R. Weichselbaum ◽  
Jeffrey A. Hubbell ◽  
Melody A. Swartz

Sign in / Sign up

Export Citation Format

Share Document