Regulation of MAP kinase by calcium-sensing receptor in bovine parathyroid and CaR-transfected HEK293 cells

2001 ◽  
Vol 280 (2) ◽  
pp. F291-F302 ◽  
Author(s):  
Olga Kifor ◽  
R. John MacLeod ◽  
Ruben Diaz ◽  
Mei Bai ◽  
Toru Yamaguchi ◽  
...  

Regulation of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway by the extracellular calcium (Cao 2+)-sensing receptor (CaR) was investigated in bovine parathyroid and CaR-transfected human embryonic kidney (HEKCaR) cells. Elevating Cao 2+ or adding the selective CaR activator NPS R-467 elicited rapid, dose-dependent phosphorylation of ERK1/2. These phosphorylations were attenuated by pretreatment with pertussis toxin (PTX) or by treatment with the phosphotyrosine kinase (PTK) inhibitors genistein and herbimycin, the phosphatidylinositol-specific phospholipase C (PI-PLC) inhibitor U-73122, or the protein kinase C (PKC) inhibitor GF109203X and were enhanced by the PKC activator phorbol 12-myristate 13-acetate. Combined treatment with PTX and inhibitors of both PKC and PTK nearly abolished high Cao 2+-evoked ERK1/2 activation in HEKCaR cells, demonstrating CaR-mediated coupling via both Gq and Gi. High Cao 2+ increased serine phosphorylation of the 85-kDa cytosolic phospholipase A2(cPLA2) in both parathyroid and HEKCaR cells. The selective mitogen-activated protein kinase (MAPK) inhibitor PD98059 abolished high-Cao 2+-induced ERK1/2 activation and reduced cPLA2 phosphorylation in both cell types, documenting MAPK's role in cPLA2 activation. Thus our data suggest that the CaR activates MAPK through PKC, presumably through Gq/11-mediated activation of PI-PLC, as well as through Gi- and PTK-dependent pathway(s) in bovine parathyroid and HEKCaR cells and indicate the importance of MAPK in cPLA2 activation.

1997 ◽  
Vol 325 (2) ◽  
pp. 405-410 ◽  
Author(s):  
Jonny WIJKANDER ◽  
Karin GEWERT ◽  
Ulf SVENSSON ◽  
Elisabeth HOLST ◽  
Roger SUNDLER

Exposure of mouse macrophages to either phorbol ester or certain bacteria was previously shown to cause increased phosphorylation of the cytosolic 85 kDa phospholipase A2 as well as a stable increase in its catalytic activity. We have now attempted to map the major phosphorylation sites on the enzyme in such cells. Phosphorylation occurred on serine residues without a detectable increase in either phosphothreonine or phosphotyrosine. After CNBr cleavage five fragments showed increased 32P labelling. Among those the most heavily labelled fragment was identified as the most C-terminal (residues 698–749), containing six serine residues. This was true whether phorbol ester or bacteria, causing protein kinase C-independent phospholipase A2 activation, was used as stimulus. The heavy phosphorylation of the most C-terminal fragment and an analysis of tryptic peptides derived from it suggested that more than one of the six serine residues became phosphorylated. Smaller increases also occurred in other CNBr-cleaved fragments from the C-terminal part of the protein, including that carrying Ser-505, a known target of the mitogen-activated protein kinase ERK-2 (extracellular-signal regulated kinase). Dexamethasone treatment (1–100 nM for 20 h), which was earlier shown to dose-dependently down-regulate the 85 kDa phospholipase A2 and its activation by phorbol ester and zymosan, was here shown also to counteract the protein kinase C-independent activation and arachidonate release elicited by bacteria. It remains to be determined whether all phosphorylation sites are equally affected under those conditions.


2004 ◽  
Vol 63 (2) ◽  
pp. 227-232 ◽  
Author(s):  
Yun Chau Long ◽  
Ulrika Widegren ◽  
Juleen R. Zierath

Exercise training improves glucose homeostasis through enhanced insulin sensitivity in skeletal muscle. Muscle contraction through physical exercise is a physiological stimulus that elicits multiple biochemical and biophysical responses and therefore requires an appropriate control network. Mitogen-activated protein kinase (MAPK) signalling pathways constitute a network of phosphorylation cascades that link cellular stress to changes in transcriptional activity. MAPK cascades are divided into four major subfamilies, including extracellular signal-regulated kinases 1 and 2, p38 MAPK, c-Jun NH2-terminal kinase and extracellular signal-regulated kinase 5. The present review will present the current understanding of parallel MAPK signalling in human skeletal muscle in response to exercise and muscle contraction, with an emphasis on identifying potential signalling mechanisms responsible for changes in gene expression.


2004 ◽  
Vol 72 (10) ◽  
pp. 5662-5667 ◽  
Author(s):  
Nicola J. Mason ◽  
Jim Fiore ◽  
Takashi Kobayashi ◽  
Katherine S. Masek ◽  
Yongwon Choi ◽  
...  

ABSTRACT The production of interleukin-12 (IL-12) is critical to the development of innate and adaptive immune responses required for the control of intracellular pathogens. Many microbial products signal through Toll-like receptors (TLR) and activate NF-κB family members that are required for the production of IL-12. Recent studies suggest that components of the TLR pathway are required for the production of IL-12 in response to the parasite Toxoplasma gondii; however, the production of IL-12 in response to this parasite is independent of NF-κB activation. The adaptor molecule TRAF6 is involved in TLR signaling pathways and associates with serine/threonine kinases involved in the activation of both NF-κB and mitogen-activated protein kinase (MAPK). To elucidate the intracellular signaling pathways involved in the production of IL-12 in response to soluble toxoplasma antigen (STAg), wild-type and TRAF6−/− mice were inoculated with STAg, and the production of IL-12(p40) was determined. TRAF6−/− mice failed to produce IL-12(p40) in response to STAg, and TRAF6−/− macrophages stimulated with STAg also failed to produce IL-12(p40). Studies using Western blot analysis of wild-type and TRAF6−/− macrophages revealed that stimulation with STAg resulted in the rapid TRAF6-dependent phosphorylation of p38 and extracellular signal-related kinase, which differentially regulated the production of IL-12(p40). The studies presented here demonstrate for the first time that the production of IL-12(p40) in response to toxoplasma is dependent upon TRAF6 and p38 MAPK.


Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 581
Author(s):  
Lihong Cheng ◽  
Hiroyuki Osada ◽  
Tianyan Xing ◽  
Minoru Yoshida ◽  
Lan Xiang ◽  
...  

Amarogentin (AMA) is a secoiridoid glycoside isolated from the traditional Chinese medicine, Gentiana rigescens Franch. AMA exhibits nerve growth factor (NGF)-mimicking and NGF-enhancing activities in PC12 cells and in primary cortical neuron cells. In this study, a possible mechanism was found showing the remarkable induction of phosphorylation of the insulin receptor (INSR) and protein kinase B (AKT). The potential target of AMA was predicted by using a small-interfering RNA (siRNA) and the cellular thermal shift assay (CETSA). The AMA-induced neurite outgrowth was reduced by the siRNA against the INSR and the results of the CETSA suggested that the INSR showed a significant thermal stability-shifted effect upon AMA treatment. Other neurotrophic signaling pathways in PC12 cells were investigated using specific inhibitors, Western blotting and PC12(rasN17) and PC12(mtGAP) mutants. The inhibitors of the glucocorticoid receptor (GR), phospholipase C (PLC) and protein kinase C (PKC), Ras, Raf and mitogen-activated protein kinase (MEK) significantly reduced the neurite outgrowth induced by AMA in PC12 cells. Furthermore, the phosphorylation reactions of GR, PLC, PKC and an extracellular signal-regulated kinase (ERK) were significantly increased after inducing AMA and markedly decreased after treatment with the corresponding inhibitors. Collectively, these results suggested that AMA-induced neuritogenic activity in PC12 cells potentially depended on targeting the INSR and activating the downstream Ras/Raf/ERK and PI3K/AKT signaling pathways. In addition, the GR/PLC/PKC signaling pathway was found to be involved in the neurogenesis effect of AMA.


Reproduction ◽  
2006 ◽  
Vol 131 (4) ◽  
pp. 711-719 ◽  
Author(s):  
Munkhuu Bayarsaikhan ◽  
Akiko Shiratsuchi ◽  
Davaakhuu Gantulga ◽  
Yoshinobu Nakanishi ◽  
Katsuji Yoshioka

Scaffold proteins of mitogen-activated protein kinase (MAPK) intracellular signal transduction pathways mediate the efficient and specific activation of the relevant MAPK signaling modules. Previously, our group and others have identified c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1, also known as JNK-interacting protein 3) as a scaffold protein for JNK MAPK pathways. Although JSAP1 is expressed in the testis in adults, its expression during development has not been investigated. In addition, it is unknown which types of cells in the testis express the scaffold protein. Here, we examined the expression of JSAP1 in the testis of mice aged 14 days, 20 days, 6 weeks, and 12 weeks by immunohistochemistry and Western blotting. The specificity of the anti-JSAP1 antibody was evaluated from its reactivity to exogenously expressed JSAP1 and a structurally related protein, and by antigen-absorption experiments. The immunohistochemical analyses with the specific antibody showed that the JSAP1 protein was selectively expressed in the spermatogonia and spermatocytes, but not in other cell types, including spermatids and somatic cells, during development. However, not all spermatogonia and spermatocytes were immunopositive either, especially in the 12-week-old mouse testis. Furthermore, we found by Western blotting that the expression levels of JSAP1 protein vary during development; there is high expression until 6 weeks after birth, which approximately corresponds to the end of the first wave of spermatogenesis. Collectively, these results suggest that JSAP1 function may be important in spermatogenic cells during early postnatal development.


Sign in / Sign up

Export Citation Format

Share Document