Stretch reduces nephrin expression via an angiotensin II-AT1-dependent mechanism in human podocytes: effect of rosiglitazone

2010 ◽  
Vol 298 (2) ◽  
pp. F381-F390 ◽  
Author(s):  
Ilaria Miceli ◽  
Davina Burt ◽  
Elena Tarabra ◽  
Giovanni Camussi ◽  
Paolo Cavallo Perin ◽  
...  

Increased glomerular permeability to proteins is a characteristic feature of diabetic nephropathy (DN). The slit diaphragm is the major restriction site to protein filtration, and the loss of nephrin, a key component of the slit diaphragm, has been demonstrated in both human and experimental DN. Both systemic and glomerular hypertension are believed to be important in the pathogenesis of DN. Human immortalized podocytes were subjected to repeated stretch-relaxation cycles by mechanical deformation with the use of a stress unit (10% elongation, 60 cycles/min) in the presence or absence of candesartan (1 μM), PD-123319 (1 μM), and rosiglitazone (0.1 μM). Nephrin mRNA and protein expression were assessed using quantitative real-time PCR, immunoblotting, and immunofluorescence, and the protein expression of AT1 receptor and angiotensin II secretion were evaluated. Exposure to stretch induced a significant ∼50% decrease in both nephrin mRNA and protein expression. This effect was mediated by an angiotensin II-AT1 mechanism. Indeed, podocyte stretching induced both angiotensin II secretion and AT1 receptor overexpression, podocyte exposure to angiotensin II reduced nephrin protein expression, and both the AT-1 receptor antagonist candesartan and a specific anti-angiotensin II antibody completely abolished stretch-induced nephrin downregulation. Similar to candesartan, the peroxisome proliferator-activated receptor (PPAR)-γ agonist, rosiglitazone, also inhibited stretch-induced nephrin downregulation, suggesting interference with stretch-induced activation of the angiotensin II-AT1 receptor system. Accordingly, rosiglitazone did not alter stretch-induced angiotensin II secretion, but it prevented AT1 upregulation in response to stretch. These results suggest a role for hemodynamic stress in loss of nephrin expression and allude to a role of PPAR-γ agonists in the prevention of this loss.

2003 ◽  
Vol 372 (1) ◽  
pp. 203-210 ◽  
Author(s):  
Zhimin TONG ◽  
Xuli WU ◽  
James P. KEHRER

MK886, a strong proapoptotic agent, is an inhibitor of 5-lipoxygenase (LOX) through binding to the 5-LOX-activating protein (FLAP). Although MK886-induced apoptosis is through a FLAP-independent pathway, the precise mechanisms are not understood. In the present study, a possible role of 24p3, a lipocalin, in MK886-induced apoptosis was investigated. Exposure of murine prolymphoid progenitor cells (FL5.12) to 20 μM MK886 for 16 h dramatically increased 24p3 mRNA and protein expression. Induction could also be achieved with another FLAP inhibitor, MK591. The induction of 24p3 by MK886 was dose- and time-dependent. The up-regulated 24p3 mRNA expression by MK886 was enhanced a further 3.1-fold by WY14643, an activator of peroxisome-proliferator-activated receptor α, whereas ciglitazone, an activator of peroxisome-proliferator-activated receptor γ attenuated the MK886-induced 24p3 expression by more than 50%. Neither WY14643 nor ciglitazone alone had any effect on the expression of 24p3. The induction of 24p3 by MK886 was dependent on the synthesis of new protein(s), since cycloheximide, an inhibitor of protein synthesis, prevented this effect. In all cases, including the inhibition of MK886-induced 24p3 protein expression by stable transfection with antisense cDNA of 24p3, the extent of apoptosis closely paralleled 24p3 levels. Apoptosis induced by MK886, or enhanced by WY14643, was accompanied by the cleavage and activation of caspase-3. The overexpression of bcl-2 or bcl-xL in FL5.12 cells inhibited apoptosis induced by MK886 as well as the enhancement of apoptosis by WY14643. Thus 24p3 is an MK886-inducible gene and may play an important role in MK886-induced apoptosis.


PPAR Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jingjing Li ◽  
Chuanyong Guo ◽  
Jianye Wu

15-Deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2), a natural peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, has been explored in some detail over the last 20 years. By triggering the PPAR-γ signalling pathway, it plays many roles and exerts antitumour, anti-inflammatory, antioxidation, antifibrosis, and antiangiogenesis effects. Although many synthetic PPAR-γ receptor agonists have been developed, as an endogenous product of PPAR-γ receptors, 15d-PGJ2 has beneficial characteristics including rapid expression and the ability to contribute to a natural defence mechanism. In this review, we discuss the latest advances in our knowledge of the biological role of 15d-PGJ2 mediated through PPAR-γ. It is important to understand its structure, synthesis, and functional mechanisms to develop preventive agents and limit the progression of associated diseases.


2018 ◽  
Vol 37 (11) ◽  
pp. 1187-1198 ◽  
Author(s):  
A Tabassum ◽  
T Mahboob

The present study focused on the role of peroxisome proliferator–activated receptor-gamma (PPAR-γ) activation on renal oxidative damages, serum visfatin, and advanced glycation end products (AGEs) in high-fat diet (HFD)-induced type 2 diabetes mellitus. Following the institutional animal ethics committee guidelines, Wistar rats were categorized into five groups: group 1: fed on a normal rat diet; group 2: HFD-induced obese rats (HFD for 8 weeks); group 3: HFD-fed rats treated with rosiglitazone (RSG; 3 mg/kg orally for 7 days); group 4: T2DM rats induced by HFD and low dose of streptozotocin (i.p. 35 mg/kg); group 5: T2DM rats treated with RSG (3 mg/kg orally for 7 days). Serum levels of AGEs and visfatin, renal damage, and oxidative stress were analyzed. Results showed that HFD-induced obesity and T2DM caused an elevated blood glucose, serum AGEs, visfatin, insulin, urea, creatinine, and tissue malondialdehyde, whereas a decreased catalase and superoxide dismutase activity were observed. The PPAR-γ activation via agonist restored these changes. Our findings suggest that AGEs and visfatin possess an important role in the progression of renal oxidative stress, which can be reduced by the PPAR-γ agonist that impede deleterious effects of HFD and HFD-induced T2DM on renal damage.


2017 ◽  
Vol 95 (6) ◽  
pp. 641-646 ◽  
Author(s):  
Ola Ahmed El-Gohary ◽  
Mona Maher Allam

Infarct-like lesion induced by isoprenaline is a well-known model to study myocardial infarction (MI). Vitamin D has been shown to have anti-inflammatory and antioxidant effects. Recent studies highlighted cross talk between vitamin D and peroxisome proliferator-activated receptor gamma (PPAR-γ). The present study was designed to investigate the effect of pretreatment with vitamin D on the isoprenaline-induced infarct-like lesion in rats and the role of PPAR-γ as a novel mechanism in vitamin-D-mediated cardioprotective effect. Markers chosen to assess cardiac damage included serum level of creatine kinase (CK), lactate dehydrogenase (LDH), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Cardiac contents of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH) were also assessed. Furthermore, ECG monitoring and measurement of injury extension were carried out. Isoprenaline increased the level of cardiac enzymes, as well as inflammatory and oxidative stress biomarkers. In addition, it produced ST-segment elevation. Pretreatment with vitamin D significantly improved previous parameters. The prior treatment with bisphenol A diglycidyl ether (BADGE), a PPAR-γ antagonist, significantly attenuated the protective effect of vitamin D. In conclusion, vitamin D can be demonstrated as a promising cardioprotective agent in MI and PPAR-γ significantly contributes toward vitamin-D-mediated protection.


PPAR Research ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Justin L. Wilson ◽  
Rong Duan ◽  
Ahmed El-Marakby ◽  
Abdulmohsin Alhashim ◽  
Dexter L. Lee

The anti-inflammatory properties of PPAR-αplays an important role in attenuating hypertension. The current study determines the anti-hypertensive and anti-inflammatory role of PPAR-αagonist during a slow-pressor dose of Ang II (400 ng/kg/min). Ten to twelve week old male PPAR-αKO mice and their WT controls were implanted with telemetry devices and infused with Ang II for 12 days. On day 12 of Ang II infusion, MAP was elevated in PPAR-αKO mice compared to WT (161±4 mmHg versus145±4 mmHg) and fenofibrate (145 mg/kg/day) reduced MAP in WT + Ang II mice (134±7 mmHg). Plasma IL-6 levels were higher in PPAR-αKO mice on day 12 of Ang II infusion (30±4versus8±2 pg/mL) and fenofibrate reduced plasma IL-6 in Ang II-treated WT mice (10±3 pg/mL). Fenofibrate increased renal expression of CYP4A, restored renal CYP2J expression, reduced the elevation in renal ICAM-1, MCP-1 and COX-2 in WT + Ang II mice. Our results demonstrate that activation of PPAR-αattenuates Ang II-induced hypertension through up-regulation of CYP4A and CYP2J and an attenuation of inflammatory markers such as plasma IL-6, renal MCP-1, renal expression of ICAM-1 and COX-2.


2016 ◽  
Vol 28 (3) ◽  
pp. 357 ◽  
Author(s):  
Agnieszka Rak-Mardyła ◽  
Eliza Drwal

In the present study, using real-time polymerase chain reaction and immunoblotting methods, we quantified the expression of peroxisome proliferator-activated receptor (PPAR) γ, PPARα and PPARβ in different sized ovarian follicles (small (SF), medium (MF) and large (LF) follicles) in prepubertal and adult pigs. In prepubertal pigs, PPARγ and PPARα expression was highest in LF; however, PPARβ expression did not differ among SF, MF and LF. In mature pigs, only protein expression of PPARγ and PPARα increased during ovarian follicle development. Following identification of very high levels of PPARγ expression in LF in prepubertal and adult pigs, using in vitro culture of ovarian follicles, we determined the effect of resistin at 0.1, 1 and 10 ng mL–1 on PPARγ mRNA and protein expression and the effect of rosiglitazone at 25 and 50 µM (a PPARγ agonist) on resistin mRNA and protein expression. Resistin increased PPARγ expression in ovarian follicles in both prepubertal and adult pigs, whereas rosiglitazone had an inhibitory effect on resistin expression. The role of PPARγ in regulating the effects of resistin on ovarian steroidogenesis was investigated using GW9662 (a PPARγ antagonist at dose of 1 μM). In these studies, GW9662 reversed the effect of resistin on steroid hormone secretion. The data suggest that there is local cooperation between resistin and PPARγ expression in the porcine ovary. Resistin significantly increased the expression of PPARγ, whereas PPARγ decreased resistin expression; thus, PPARγ is a new key regulator of resistin expression and function.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Dexter L Lee ◽  
Sheree M Johnson ◽  
Ian Stukes ◽  
Nia Williams ◽  
Ugoeze C Ananaba ◽  
...  

Decreases in circadian rhythms of cardiovascular parameters, such as day to night changes in mean arterial pressure (MAP), heart rate (HR), pulse pressure (PP), systolic (SP) and diastolic pressure (DP) are an index of cardiovascular disease. Peroxisome proliferator activated receptor - alpha (PPAR-α) has been shown to decrease inflammatory markers and hypertension a slow pressor dose of Angiotensin II (Ang II); however, the role of PPAR-α on cardiovascular parameters during the initial stages of Ang II infusion is unknown. We hypothesize that the absence of PPAR-α will cause a reduction in the day to night changes in MAP, HR, PP, SP and DP during the initial stages of a slow pressor dose of Ang II. Male (10 - 12 weeks old) PPAR-αknockout (KO) and wild-type (WT) mice were infused with Ang II (400 ng/kg/min) for three days. Radiotelemetry was used to measure the cardiovascular parameters. The baseline MAP values were: 100 + 10 mmHg (WT) and 108 + 9 mmHg for KO. The baseline HR values were: 530 + 10 bpm (WT) and 526 + 6 bpm (KO). The baseline PPs were 17 + 0.2 mmHg (WT) and 18 + 0.3 mmHg (KO). The baseline SBPs were 108 + 9 mmHg (WT) and 116 + 10 mmHg (KO). The baseline DBPs were 91 + 9 mmHg (WT) and 98 + 10 mmHg (KO). During the first three days of Ang II infusion, the change in day to night MAP was 20 ± 2 mmHg and 10 ± 2 mmHg in Ang II treated WT and KO mice, respectively. Changes in day to night HR were 25 ± 4 bpm and 46 ± 7 bpm for WT and KO mice, respectively. The day to night changes in PP were 8 ± 1 mmHg for WT and 2 ± 2 mmHg for KO mice. The day to night changes in SBPs were 20 ± 2 mmHg and 12 ± 3 mmHg for WT and KO mice, respectively. Changes in day to night DBPs were 18 ± 2 mmHg for WT and 9 ± 2 mmHg for KO mice. TBARS and Interleukin-17 were increased in heart homogenates of KO + Ang II (15 ± 2 μM) and (1.5 ± 0.3 ng/mL) vs WT + Ang II (11 ± 3 μM) and (1.0 ± 0.2 ng/mL). Nitrite/Nitrate was decreased in KO + Ang II (1.0 ± 0.1 nM) vs WT + Ang II (1.5 ± 0.5 nM). In summary, the absence of PPAR-α decreases the day to night changes in MAP, SBP, DBP and PP during the initial three days of a slow pressor dose of Ang II. In the absence of PPAR-α, increases in oxidative stress and inflammation are mechanisms that may contribute to the changes in the cardiovascular parameters and suggest the occurrence of cardiovascular diseases during a slow pressor dose of Ang II-infusion.


Sign in / Sign up

Export Citation Format

Share Document