Hormonal and electrolyte response to exposure to 17,500 ft

1975 ◽  
Vol 38 (4) ◽  
pp. 636-642 ◽  
Author(s):  
R. Frayser ◽  
I. D. Rennie ◽  
G. W. Gray ◽  
C. S. Houston

Hormone, electrolyte, and body fluid compartment changes were studied in subjects who either spent time at 10,000 ft before flying to 17,500 ft or were premedicated with acetazolamide and flown directly to 17,500 ft. In the former group, at 10,000 ft, renin and aldosterone were not different from control. Cortisol increased significantly from 9.8 to 19.5 mug/100 ml on the third day. At 17,500 ft, renin, aldosterone and cortisol were significantly elevated on day 3 but had returned to control levels by day 5. Sodium and potassium excretion was significantly reduced at both altitudes. Total body water, extracellular and plasma volume were reduced (P less than 0.05) at 17,500 ft. Subjects pretreated with acetazolamide and flown directly to 17,500 ft had significant increases (P less than 0.001) in plasma renin, aldosterone, and cortisol levels during the first 4 days at altitude. On day 1 there was a decrease of 45% in sodium and 38% in potassium excretion. On day 4 there was a decrease of 63% and 51%, respectively. These changes are not associated with the premedication. The initial changes may reflect the immediate response to stress and alkalosis followed by a return to control levels as the body adapts to altitude.

Author(s):  
Robert G. Hahn

The maintenance of body fluid homeostasis is an essential task in perioperative care. Body fluid volumes are tightly controlled by the nervous system, by hormones, and by the kidneys. All these systems are affected by anaesthesia and surgery in ways that must be appreciated by the anaesthetist. Administration of infusion fluids is the key tool to prevent major derangements of the body fluid volumes during before, during, and after surgery. By varying its composition, an infusion fluid can be made to selectively expand or shrink a body fluid compartment. The total osmolality determines whether the infused volume distributes over the total body water or over the extracellular fluid volume, or even attracts fluid from intracellular space. Infusion fluid is the first-line tool in the management of the vasodilation that is induced by both general and regional anaesthesia. Fluids are also an essential component in the treatment of haemorrhage, in which a reduction in arterial pressure implies that 20% of the blood volume has been lost. Capillary refill restores the blood volume, but too slowly to prevent haemorrhagic shock. In this situation, prompt intravenous fluid therapy is life-saving. Electrolyte derangements may be induced by disease and/or medication. The most essential ones to consider during anaesthesia are sodium, potassium, calcium, and bicarbonate.


1973 ◽  
Vol 45 (1) ◽  
pp. 77-88 ◽  
Author(s):  
J. R. E. Dathan ◽  
D. B. Johnson ◽  
F. J. Goodwin

1. The relationship between various body fluid compartment volumes, plasma renin activity and mean arterial blood pressure was studied in twenty-six patients with chronic renal failure. 2. Mean arterial blood pressure was positively correlated with total exchangeable sodium, blood volume and plasma renin activity: there was no significant correlation with either total body water or extracellular fluid volume. 3. Multiple regression analysis revealed that plasma renin activity combined with total exchangeable sodium, blood volume, red cell mass or total body water provided a better means of predicting blood pressure than any of the variables taken alone. 4. In a second study performed after a period of regular dialysis treatment no correlation was found between mean arterial pressure and either body fluid compartment volumes or plasma renin activity.


1952 ◽  
Vol 29 (1) ◽  
pp. 22-29
Author(s):  
A. D. HOBSON ◽  
W. STEPHENSON ◽  
A. EDEN

The results obtained in this investigation are admittedly not as extensive as is desirable but they allow certain conclusions to be drawn. 1. The sodium and potassium contents of the body fluid of Ascaris lumbricoides are somewhat variable, but these variations do not seem to be dependent upon those of the external medium. 2. The calcium and magnesium contents of the body fluid are relatively constant and are not affected by those of the external medium. 3. The chloride concentration of the body fluid is closely related to and always remains lower than that of the external medium. 4. As shown in Table 2, there is a large gap between the total concentrations of inorganic cations and anions in the intestinal fluid of the pig. Presumably a considerable proportion of the inorganic cations are combined with organic anions, at present undetermined. Exposing the worms to saline media composed of chloride caused a large rise in the internal chloride concentration. This may well be a limiting factor in the life of the animals in such media, and the next step forward would seem to be the fuller analysis of the environment to which they are normally exposed.


1987 ◽  
Vol 253 (5) ◽  
pp. F1031-F1039 ◽  
Author(s):  
B. M. Wall ◽  
G. V. Byrum ◽  
J. H. Galla ◽  
R. G. Luke

To determine whether chloride repletion without sodium could correct chronic chloride depletion metabolic alkalosis (CDA) in Sprague-Dawley rats without volume expansion and without increasing glomerular filtration rate (GFR), CDA was generated by peritoneal dialysis (PD) against 0.15 M NaHCO3 and maintained for 7-10 days by a chloride-restricted diet supplemented with sodium and potassium salts. Control animals were dialyzed against Ringer bicarbonate. The maintenance period of chronic CDA, compared with control, was characterized by hypokalemic metabolic alkalosis (serum TCO2 31.9 +/- 0.6 vs. 23.1 +/- 0.5 meq/l, P less than 0.05), volume contraction (plasma volume 3.76 +/- 0.08 vs. 4.19 +/- 0.22 ml/100 g body wt, P less than 0.05), decreased GFR (838 +/- 84 vs. 1045 +/- 45 microliters.min-1.100 g body wt-1, P less than 0.05), increased plasma renin activity (PRA) (63 +/- 13 vs. 12 +/- 3 ng.ml-1.h-1, P less than 0.05), but unchanged plasma aldosterone concentrations (PAC) (4.1 +/- 1.0 vs. 3.4 +/- 1.6 ng/dl, P = NS). Complete correction of chronic CDA was accomplished by 24 h of ingestion of choline chloride drink, and despite negative sodium balance, neutral potassium balance, continued bicarbonate ingestion, and persistent volume contraction (plasma volume 3.76 +/- 0.08 vs. 3.73 +/- 0.12 ml/100 g body wt pre- and postcorrection, P = NS), GFR remained decreased (659 +/- 87 vs. 1,045 +/- 45 microliters.min-1.100 g body wt-1, P less than 0.05), PRA decreased (63 +/- 13 vs. 33 +/- 5 ng.ml-1.h-1, P less than 0.05), but PAC did not change (4.1 +/- 1.0 vs. 6.1 +/- 1.6 ng/dl, P = NS) after correction of CDA.(ABSTRACT TRUNCATED AT 250 WORDS)


1996 ◽  
Vol 81 (1) ◽  
pp. 105-116 ◽  
Author(s):  
C. S. Leach ◽  
C. P. Alfrey ◽  
W. N. Suki ◽  
J. I. Leonard ◽  
P. C. Rambaut ◽  
...  

The fluid and electrolyte regulation experiment with seven subjects was designed to describe body fluid, renal, and fluid regulatory hormone responses during the Spacelab Life Sciences-1 (9 days) and -2 (14 days) missions. Total body water did not change significantly. Plasma volume (PV; P < 0.05) and extracellular fluid volume (ECFV; P < 0.10) decreased 21 h after launch, remaining below preflight levels until after landing. Fluid intake decreased during weightlessness, and glomerular filtration rate (GFR) increased in the first 2 days and on day 8 (P < 0.05). Urinary antidiuretic hormone (ADH) excretion increased (P < 0.05) and fluid excretion decreased early in flight (P < 0.10). Plasma renin activity (PRA; P < 0.10) and aldosterone (P < 0.05) decreased in the first few hours after launch; PRA increased 1 wk later (P < 0.05). During flight, plasma atrial natriuretic peptide concentrations were consistently lower than preflight means, and urinary cortisol excretion was usually greater than preflight levels. Acceleration at launch and landing probably caused increases in ADH and cortisol excretion, and a shift of fluid from the extracellular to the intracellular compartment would account for reductions in ECFV. Increased permeability of capillary membranes may be the most important mechanism causing spaceflight-induced PV reduction, which is probably maintained by increased GFR and other mechanisms. If the Gauer-Henry reflex operates during spaceflight, it must be completed within the first 21 h of flight and be succeeded by establishment of a reduced PV set point.


Author(s):  
JungHun Choi

A bioelectrical impedance analysis is a proven method to measure body composition in clinical situations. It uses the relation between the body fluid and the impedances in a variety of frequencies. A body model can be simplified as a parallel combination of a capacitor and two resistors which represent a cell membrane, Intracellular Fluid (ICF), and Extracellular Fluid (ECF). Low frequency current passes through ECF and high frequency current also passes through ICF in a body. A Cole-Cole plot is a graphical interpretation of the path of impedances and each axis represents resistance and reactance with variable frequencies. A high value of resistance in a horizontal axis is a resistance value of ECF and a low value of resistance at a high frequency presents ICF. Interpolation technique is needed to find out the exact cross-point between impedance values and the horizontal axis. The two estimated impedance values are used to derive Total Body Water (TBW), ICF, ECF, Fat Free Mass (FFM), and Fat Mass (FM) from various published equations [1]. Minimizing the possible error of fluid volume assessment and accurate prediction of fluid status in a human body is essential for appropriate therapy. Different techniques of fluid status assessment in a human body can be applicable, such as physical examination, orthostatic vital signs, blood volume measurement, acoustic cardiograph, chest radiography, and thoracic ultrasonography [2]. In this study, a bioelectrical impedance spectroscopy device and simple body models were used to collect data such as TBW, ICF, ECF, FM, and FFM. The ratio between ICF and ECF was investigated for the same values of TBW, FM, and FFM by varying impedance values.


1973 ◽  
Vol 58 (2) ◽  
pp. 523-536
Author(s):  
W. R. KAUFMAN ◽  
J. E. PHILLIPS

1. Of the total meal imbibed by female Dermacentor andersoni during the normal adult feeding cycle, about 80% is excreted. Of the total water excreted by the tick, 75% is removed by salivation, less than 3% is evaporated from the integument and spiracles, and the remainder is lost via the anus. 2. Of the total excreted sodium and potassium, 4 and 82% respectively are lost via the anus. The remainder in each case is presumed excreted via the salivary glands. 3. The ionic and osmotic concentrations of the haemolymph and saliva stabilize at constant values by the third or fourth day of feeding. The volume of extracellular fluid is constantly maintained at 23% of the body weight, even though the total body weight increases 75 times over the unfed weight, and the volume of excreted fluid passing through the haemolymph is about ten times the haemolymph volume at repletion.


1986 ◽  
Vol 70 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Axel Overlack ◽  
Evita Bäcker-Kreutz ◽  
Christa Ressel ◽  
Hans-Michael Müller ◽  
Rainer Kolloch ◽  
...  

1. Kinins have been considered to be involved in the escape from the sodium retaining effects of mineralocorticoids. In a metabolic study in rats, the importance of the kallikrein-kinin system for sodium and potassium excretion was evaluated by aprotinin-induced kallikrein inhibition under basal conditions and during DOCA administration. 2. Kallikrein inhibition was accompanied by a transient sodium retention. The escape from the sodium retaining effect of DOCA was not affected. However, the DOCA-induced potassium loss was enhanced. 3. Kallikrein inhibition decreased urinary prostaglandin (PG) E2 and prevented the DOCA-induced rise in PGE2. Plasma renin activity was stimulated after 10 days of aprotinin administration. 4. The kallikrein-kinin system is not an important mediator of the escape phenomenon but it may play a role in the regulation of sodium and potassium excretion.


Sign in / Sign up

Export Citation Format

Share Document