Pattern of breathing and ventilatory response to CO2 in subjects practicing hatha-yoga

1981 ◽  
Vol 51 (6) ◽  
pp. 1625-1629 ◽  
Author(s):  
D. C. Stanescu ◽  
B. Nemery ◽  
C. Veriter ◽  
C. Marechal

WE studied eight Belgian subjects well advanced in the practice of hatha-yoga and compared them with eight sex-, age-, and height-matched control subjects. Practice of yoga (range 4–12 yr) involves control of posture and manipulation of breathing, including slow near-vital capacity maneuvers accompanied by apnea at end inspiration and end expiration. Average values for the yoga and the control group (in parentheses) are as follows: ventilation (VE) 5.53 1 X min-1 (7.07); tidal volume (VT), 1.03 liters (0.56); rate of breathing, 5.5 min-1 (13.4); end-tidal PCO2, 39.0 Torr (35.3). All differences are significant (P less than 0.05). Ventilatory response to CO2 (rebreathing technique) was significantly lower in the yoga group (P less than 0.01). The regression relating VE to VT during rebreathing of CO2 was VE = 8.1 (VT - 0.23) for the yoga group and VE = 15.8 (VT - 0.16) for the control group (P less than 0.005). We attribute these changes to chronic manipulation of respiration.

1985 ◽  
Vol 68 (2) ◽  
pp. 215-225 ◽  
Author(s):  
A. J. Winning ◽  
R. D. Hamilton ◽  
S. A. Shea ◽  
C. Knott ◽  
A. Guz

1. The effect on ventilation of airway anaesthesia, produced by the inhalation of a 5% bupivacaine aerosol (aerodynamic mass median diameter = 4.77 μm), was studied in 12 normal subjects. 2. The dose and distribution of the aerosol were determined from lung scans after the addition to bupivacaine of 99mTc. Bupivacaine labelled in this way was deposited primarily in the central airways. The effectiveness and duration of airway anaesthesia were assessed by the absence of the cough reflex to the inhalation of three breaths of a 5% citric acid aerosol. Airway anaesthesia always lasted more than 20 min. 3. Resting ventilation was measured, by respiratory inductance plethysmography, before and after inhalation of saline and bupivacaine aerosols. The ventilatory response to maximal incremental exercise and, separately, to CO2 inhalation was studied after the inhalation of saline and bupivacaine aerosols. Breathlessness was quantified by using a visual analogue scale (VAS) during a study and by questioning on its completion. 4. At rest, airway anaesthesia had no effect on mean tidal volume (VT), inspiratory time (Ti), expiratory time (Te) or end-tidal Pco2, although the variability of tidal volume was increased. On exercise, slower deeper breathing was produced and breathlessness was reduced. The ventilatory response to CO2 was increased. 5. The results suggest that stretch receptors in the airways modulate the pattern of breathing in normal man when ventilation is stimulated by exercise; their activation may also be involved in the genesis of the associated breathlessness. 6. A hypothesis in terms of a differential airway/alveolar receptor block, is proposed to explain the exaggerated ventilatory response to CO2.


2008 ◽  
Vol 295 (1) ◽  
pp. H372-H381 ◽  
Author(s):  
Indu Taneja ◽  
Marvin S. Medow ◽  
June L. Glover ◽  
Neeraj K. Raghunath ◽  
Julian M. Stewart

Our prior studies indicated that postural fainting relates to splanchnic hypervolemia and thoracic hypovolemia during orthostasis. We hypothesized that thoracic hypovolemia causes excessive sympathetic activation, increased respiratory tidal volume, and fainting involving the pulmonary stretch reflex. We studied 18 patients 13–21 yr old, 11 who fainted within 10 min of upright tilt (fainters) and 7 healthy control subjects. We measured continuous blood pressure and heart rate, respiration by inductance plethysmography, end-tidal carbon dioxide (ETCO2) by capnography, and regional blood flows and blood volumes using impedance plethysmography, and we calculated arterial resistance with patients supine and during 70° upright tilt. Splanchnic resistance decreased until faint in fainters (44 ± 8 to 21 ± 2 mmHg·l−1·min−1) but increased in control subjects (47 ± 5 to 53 ± 4 mmHg·l−1·min−1). Percent change in splanchnic blood volume increased (7.5 ± 1.0 vs. 3.0 ± 11.5%, P < 0.05) after the onset of tilt. Upright tilt initially significantly increased thoracic, pelvic, and leg resistance in fainters, which subsequently decreased until faint. In fainters but not control subjects, normalized tidal volume (1 ± 0.1 to 2.6 ± 0.2, P < 0.05) and normalized minute ventilation increased throughout tilt (1 ± 0.2 to 2.1 ± 0.5, P < 0.05), whereas respiratory rate decreased (19 ± 1 to 15 ± 1 breaths/min, P < 0.05). Maximum tidal volume occurred just before fainting. The increase in minute ventilation was inversely proportionate to the decrease in ETCO2. Our data suggest that excessive splanchnic pooling and thoracic hypovolemia result in increased peripheral resistance and hyperpnea in simple postural faint. Hyperpnea and pulmonary stretch may contribute to the sympathoinhibition that occurs at the time of faint.


1996 ◽  
Vol 81 (5) ◽  
pp. 1978-1986 ◽  
Author(s):  
C. Tantucci ◽  
P. Bottini ◽  
M. L. Dottorini ◽  
E. Puxeddu ◽  
G. Casucci ◽  
...  

Tantucci, C., P. Bottini, M. L. Dottorini, E. Puxeddu, G. Casucci, L. Scionti, and C. A. Sorbini. Ventilatory response to exercise in diabetic subjects with autonomic neuropathy. J. Appl. Physiol. 81(5): 1978–1986, 1996.—We have used diabetic autonomic neuropathy as a model of chronic pulmonary denervation to study the ventilatory response to incremental exercise in 20 diabetic subjects, 10 with (Dan+) and 10 without (Dan−) autonomic dysfunction, and in 10 normal control subjects. Although both Dan+ and Dan− subjects achieved lower O2 consumption and CO2 production (V˙co 2) than control subjects at peak of exercise, they attained similar values of either minute ventilation (V˙e) or adjusted ventilation (V˙e/maximal voluntary ventilation). The increment of respiratory rate with increasing adjusted ventilation was much higher in Dan+ than in Dan− and control subjects ( P < 0.05). The slope of the linearV˙e/V˙co 2relationship was 0.032 ± 0.002, 0.027 ± 0.001 ( P < 0.05), and 0.025 ± 0.001 ( P < 0.001) ml/min in Dan+, Dan−, and control subjects, respectively. Both neuromuscular and ventilatory outputs in relation to increasingV˙co 2 were progressively higher in Dan+ than in Dan− and control subjects. At peak of exercise, end-tidal [Formula: see text] was much lower in Dan+ (35.9 ± 1.6 Torr) than in Dan− (42.1 ± 1.7 Torr; P < 0.02) and control (42.1 ± 0.9 Torr; P < 0.005) subjects. We conclude that pulmonary autonomic denervation affects ventilatory response to stressful exercise by excessively increasing respiratory rate and alveolar ventilation. Reduced neural inhibitory modulation from sympathetic pulmonary afferents and/or increased chemosensitivity may be responsible for the higher inspiratory output.


1991 ◽  
Vol 71 (1) ◽  
pp. 37-42 ◽  
Author(s):  
K. Tatsumi ◽  
M. Mikami ◽  
T. Kuriyama ◽  
Y. Fukuda

The respiratory effect of progestin differs among various animal species and humans. The rat does not hyperventilate in response to exogenous progestin. The present study was conducted to determine whether administration of combined progestin and estrogen prompts ventilatory stimulation in the male rat. Ventilation, blood gases, and metabolic rates (O2 consumption and CO2 production) were measured in the awake and unrestrained male Wistar rat. The combined administration of a synthetic potent progestin (TZP4238) and estradiol for 5 days significantly increased tidal volume and minute expiratory ventilation (VE), reduced arterial PCO2, and enhanced the ventilatory response to CO2 inhalation (delta VE/delta PCO2). On the other hand, respiratory frequency, O2 consumption, CO2 production, and body temperature were not affected. The arterial pH increased slightly, with a concomitant decrease in plasma [HCO3-]. Administration of either TZP4238 or estradiol alone or vehicle (Tween 80) had no effect on respiration, blood gases, and ventilatory response to CO2. The results indicated that respiratory stimulation following combined progestin plus estradiol treatment in the male rat involves activation of process(es) that regulate tidal volume and its augmentation during CO2 stimulus.


1978 ◽  
Vol 54 (1) ◽  
pp. 9-16 ◽  
Author(s):  
J. W. Reed ◽  
M. Ablett ◽  
J. E. Cotes

1. The ventilation and cardiac frequency during progressive exercise and the respiratory responses to breathing carbon dioxide have been measured in 33 female patients with mitral stenosis and in 31 control subjects. Compared with the control subjects, the patients' exercise ventilation and cardiac frequency were increased; the exercise tidal volume at standard minute volume, the vital capacity and the ventilatory response to carbon dioxide were reduced. The extent to which the standardized tidal volume was lower during exercise than during breathing carbon dioxide was correlated with the severity of the stenosis, as gauged by the increase in exercise cardiac frequency above the level predicted from anthropometric measurements. 2. Twenty patients were studied postoperatively. In the 12 who showed clinical improvement the exercise ventilation and cardiac frequency were reduced and the exercise tidal volume at a given minute ventilation was increased. The latter change occurred despite a reduction in vital capacity, which was probably a residual effect of thoractomy. There was no significant change in the response to breathing carbon dioxide. No material change in function was observed in the patients whose condition was not improved by the operation. 3. It is suggested that in mitral stenosis the tachypnoea which occurs during exercise, whilst mainly a mechanical consequence of the reduced vital, capacity, is also partly due to pulmonary congestion stimulating intrapulmonary receptors.


1983 ◽  
Vol 65 (1) ◽  
pp. 65-69 ◽  
Author(s):  
P. M. A. Calverley ◽  
R. H. Robson ◽  
P. K. Wraith ◽  
L. F. Prescott ◽  
D. C. Flenley

1. To determine the mode of action of doxapram in man we have measured ventilation, oxygen uptake, CO2 production, hypoxic and hypercapnic ventilatory responses in six healthy men before and during intravenous infusion to maintain a constant plasma level. 2. Doxapram changed neither resting oxygen uptake nor CO2 production but produced a substantial increase in resting ventilation at both levels of end-tidal CO2 studied. 3. Doxapram increased the ventilatory response to isocapnic hypoxia from − 0.8 ± 0.4 litre min−1 (%Sao2)−1 to −1.63 ± 0.9 litres min−1 (%Sao2)−1. This was similar to the increase in hypoxic sensitivity which resulted from raising the end-tidal CO2 by 0.5 kPa without adding doxapram. 4. The slope of the ventilatory response to rebreathing CO2 rose from 11.6 ± 5.3 litres min−1 kPa−1 to 20,4 ± 9.8 litres min−1 kPa−1 during doxapram infusion. 5. The marked increase in the ventilatory response to CO2 implies that doxapram has a central action, but the potentiation of the hypoxic drive also suggests that the drug acts on peripheral chemoreceptors, or upon their central connections, at therapeutic concentrations in normal unanaesthetized subjects.


PEDIATRICS ◽  
1983 ◽  
Vol 71 (4) ◽  
pp. 634-638
Author(s):  
Manuel Durand ◽  
Ellen McCann ◽  
June P. Brady

The effect of continuous positive airway pressure (CPAP) on the ventilatory response to CO2 in newborn infants is unknown. The CO2 response to 4% CO2 in air was studied in nine preterm infants without lung disease before and during administration of CPAP (4 to 5 cm H2O) delivered by face mask. Minute ventilation, tidal volume, respiratory frequency, and end-tidal Pco2 were measured, and the slope and intercept of the CO2 response were calculated. Respiratory pattern and changes in oxygenation were also analyzed by measuring inspiratory and expiratory time, mean inspiratory flow, mean expiratory flow, effective respiratory timing, endtidal Po2, and transcutaneous Po2. CPAP significantly decreased minute ventilation from 278.7 to 197.6 mL/mm/kg (P &lt; .001). Tidal volume and respiratory frequency were also significantly decreased. The slope of the CO2 response during CPAP was not significantly different from the slope before CPAP (36 v 33 mL/min/kg/mm Hg, P &gt; .1), but the intercept was shifted to the right (P &lt; .001). The decrease in respiratory frequency was primarily due to a prolongation of expiratory time (P &lt; .05). In addition, transcutaneous Po2 increased during administration of CPAP (P &lt; .001). These findings indicate that: (1) CPAP significantly decreases ventilation in preterm infants without lung disease, affecting both tidal volume and respiratory frequency; (2) CPAP does not appreciably alter the ventilatory response to CO2; (3) the changes in respiratory frequency are primarily accounted for by a prolongation of expiratory time; (4) CPAP improves oxygenation.


1991 ◽  
Vol 70 (2) ◽  
pp. 748-755 ◽  
Author(s):  
K. Tatsumi ◽  
C. K. Pickett ◽  
J. V. Weil

Prolonged exposure to hypoxia is accompanied by decreased hypoxic ventilatory response (HVR), but the relative importance of peripheral and central mechanisms of this hypoxic desensitization remain unclear. To determine whether the hypoxic sensitivity of peripheral chemoreceptors decreases during chronic hypoxia, we measured ventilatory and carotid sinus nerve (CSN) responses to isocapnic hypoxia in five cats exposed to simulated altitude of 5,500 m (barometric pressure 375 Torr) for 3-4 wk. Exposure to 3-4 wk of hypobaric hypoxia produced a decrease in HVR, measured as the shape parameter A in cats both awake (from 53.9 +/- 10.1 to 14.8 +/- 1.8; P less than 0.05) and anesthetized (from 50.2 +/- 8.2 to 8.5 +/- 1.8; P less than 0.05). Sustained hypoxic exposure decreased end-tidal CO2 tension (PETCO2, 33.3 +/- 1.2 to 28.1 +/- 1.3 Torr) during room-air breathing in awake cats. To determine whether hypocapnia contributed to the observed depression in HVR, we also measured eucapnic HVR (PETCO2 33.3 +/- 0.9 Torr) and found that HVR after hypoxic exposure remained lower than preexposed value (A = 17.4 +/- 4.2 vs. 53.9 +/- 10.1 in awake cats; P less than 0.05). A control group (n = 5) was selected for hypoxic ventilatory response matched to the baseline measurements of the experimental group. The decreased HVR after hypoxic exposure was associated with a parallel decrease in the carotid body response to hypoxia (A = 20.6 +/- 4.8) compared with that of control cats (A = 46.9 +/- 6.3; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)


2018 ◽  
Vol 30 (2) ◽  
pp. 243-250 ◽  
Author(s):  
Bruna M.A. Saraiva ◽  
Geferson S. Araujo ◽  
Evandro F. Sperandio ◽  
Alberto O. Gotfryd ◽  
Victor Z. Dourado ◽  
...  

Purpose: The aim of this study is to evaluate the walked distance and physiological responses during incremental shuttle walk test in patients with different degrees of adolescent idiopathic scoliosis (AIS). Methods: We evaluated 20 healthy teenagers and 46 patients with AIS; they were divided into 2 groups: AIS > 45° and AIS < 45°. The volunteers performed an incremental shuttle walk test, and the following physiological responses were quantified: oxygen consumption, tidal volume, ventilation, and the incremental shuttle walked distance. Respiratory muscle strength was quantified, pulmonary function test was performed, and the forced vital capacity and expiratory volume in the first second were obtained. Results: Patients with AIS > 45° presented significant reduced incremental shuttle walked distance compared with the AIS < 45° and control group [447 (85), 487 (95), and 603 (85), respectively]. Patients with AIS also showed reduced forced vital capacity (P = .001) and expiratory volume in the first second (P = .005) compared with control group. Moderate correlations between forced vital capacity (r = −.506) and tidal volume (r = −.476) with scoliosis angles were found. Conclusions: The incremental shuttle walk test was capable of identifying reduced functional capacity in patients with different degrees of AIS. Moreover, the severity of spinal curvature may exert influence on ventilatory and metabolic variables.


1984 ◽  
Vol 56 (1) ◽  
pp. 207-210 ◽  
Author(s):  
L. G. Moore ◽  
S. Y. Huang ◽  
R. E. McCullough ◽  
J. B. Sampson ◽  
J. T. Maher ◽  
...  

Acute hypoxia stimulates an increase in ventilation but the resulting hypocapnia limits the magnitude of the increase. Thus the hypoxic ventilatory response is usually measured during isocapnia, but this may not reflect events at high altitude. We hypothesized that the degree of inhibition by hypocapnia might depend on individual ventilatory response to CO2 and thus vary between persons. To test this hypothesis we compared the isocapnic hypoxic ventilatory response (end-tidal PCO2 maintained by CO2 addition) with the response in which CO2 was not added and the end-tidal PCO2 fell to a variable extent (poikilocapnic hypoxia). In 14 healthy persons we found that the poikilocapnic hypoxic ventilatory response was determined by two factors: sensitivity to isocapnic hypoxia acting to increase ventilation and sensitivity to CO2 acting to decrease the hypoxic ventilatory response. The ventilatory response to poikilocapnic hypoxia correlated with but was generally less than the isocapnic hypoxic response. The magnitude of the difference between them related to the hypercapnic response. Further, the results suggested that the CO2 response in the high CO2 range related to ventilatory events in the low CO2 range. Thus the magnitude of ventilatory inhibition by hypocapnia may depend on individual ventilatory responsiveness to CO2.


Sign in / Sign up

Export Citation Format

Share Document