Fiber number and size in overloaded chicken anterior latissimus dorsi muscle

1983 ◽  
Vol 54 (5) ◽  
pp. 1292-1297 ◽  
Author(s):  
P. D. Gollnick ◽  
D. Parsons ◽  
M. Riedy ◽  
R. L. Moore

The relative contribution of increases in fiber area and number was evaluated in the chicken anterior latissimus dorsi (ALD) muscle in which enlargement was induced by hanging a weight on one wing. ALD muscles from wings to which weights had been attached for periods ranging from 6 to 65 days weighed an average of 105% (range 22–225%) more than control muscles. Total muscle fiber number, determined by direct counts after nitric acid digestion and fiber dissection, and the frequency of branched fibers were unchanged by muscular enlargement. Fiber cross-sectional area was greater (P less than 0.01) in the enlarged muscles. A close relationship existed (r = 0.78) between actual muscle weight and weight calculated as the product of fiber volume, total fiber number, and muscle density for the control and enlarged muscles. Histochemical staining revealed a conversion of type IIa to type I fibers in the stretched muscles. These results support the concept that skeletal muscle enlargement in response to chronic overload is produced by hypertrophy of preexisting fibers and not be a formation of new fibers.

1989 ◽  
Vol 66 (2) ◽  
pp. 771-781 ◽  
Author(s):  
S. E. Alway ◽  
P. K. Winchester ◽  
M. E. Davis ◽  
W. J. Gonyea

The relative contribution of increases in fiber area to stretch-induced muscle enlargement was evaluated in the slow tonic fibers of the anterior latissimus dorsi of adult Japanese quails. A weight corresponding to 10% of the bird's body mass was attached to one wing. Thirty days of stretch in 34 birds averaged 171.8 +/- 13.5% increase in muscle mass and 23.5 +/- 0.8% increase in muscle fiber length. The volume density of noncontractile tissue increased in middle and distal regions of stretch-enlarged muscles. Mean fiber cross-sectional area increased 56.7 +/- 12.3% in the midregion of stretched muscles. Further analysis indicated slow beta-fiber hypertrophy occurred in proximal, middle, and distal regions; however, fast alpha-type fiber hypertrophy was limited to middle regions of stretched muscles. Stretched muscles had a significant increase in the frequency of slow beta-fibers that were less than 500 microns 2 in all regions and fast alpha-type fibers in middle and distal regions. Total fiber number was determined after nitric acid digestion of connective tissue in 10 birds. Fiber number increased 51.8 +/- 19.4% in stretched muscle. These results are the first to clearly show that muscle fiber proliferation contributes substantially to adult skeletal muscle stretch-induced enlargement, although we do not know whether the responses of the slow tonic anterior latissimus dorsi might be similar or different from mammalian twitch muscle.


2013 ◽  
Vol 45 (20) ◽  
pp. 940-947 ◽  
Author(s):  
Arimantas Lionikas ◽  
Audrius Kilikevicius ◽  
Lutz Bünger ◽  
Caroline Meharg ◽  
Andrew M. Carroll ◽  
...  

Berlin high (BEH) and Berlin low (BEL) strains selected for divergent growth differ threefold in body weight. We aimed at examining muscle mass, which is a major contributor to body weight, by exploring morphological characteristics of the soleus muscle (fiber number and cross sectional area; CSA), by analyzing the transcriptome of the gastrocnemius and by initiating quantitative trait locus (QTL) mapping. BEH muscles were four to eight times larger than those of BEL. In substrain BEH+/+, mutant myostatin was replaced with a wild-type allele; however, BEH+/+muscles still were two to four times larger compared with BEL. BEH soleus muscle fibers were two times more numerous ( P < 0.0001) and CSA was two times larger ( P < 0.0001) compared with BEL. In addition, soleus femoral attachment anomaly (SFAA) was observed in all BEL mice. One significant (Chr 1) and four suggestive (Chr 3, 4, 6, and 9) muscle weight QTLs were mapped in a 21-day-old F2 intercross ( n = 296) between BEH and BEL strains. The frequency of SFAA incidence in the F2 and in the backcross to BEL strain (BCL) suggested the presence of more than one causative gene. Two suggestive SFAA QTLs were mapped in BCL; however, their peak markers were not associated with the phenotype in F2. RNA-Seq analysis revealed 2,148 differentially expressed ( P < 0.1) genes and 45,673 single nucleotide polymorphisms and >2,000 indels between BEH+/+ and BEL males. In conclusion, contrasting muscle traits and genomic and gene expression differences between BEH and BEL strains provide a promising model for the search for genes involved in muscle growth and musculoskeletal morphogenesis.


1985 ◽  
Vol 58 (2) ◽  
pp. 619-624 ◽  
Author(s):  
B. F. Timson ◽  
B. K. Bowlin ◽  
G. A. Dudenhoeffer ◽  
J. B. George

Muscle fiber number, cross-sectional area, and composition were studied in response to enlargement produced by synergistic ablation in the mouse soleus muscle. The effect of the location of a histological section on the number of fibers that appear in the section was also studied using the mouse soleus muscle. Enlargement was produced in the soleus muscle of 15 male and 15 female mice by ablation of the ipsilateral gastrocnemius muscle. Fiber counts, using the nitric acid digestion method, revealed no difference between control and enlarged muscles in male and female mice. Mean fiber area, determined by planimetry, was 49.1 and 34.5% greater following enlargement in male and female mice, respectively. Increase in muscle weight could be totally accounted for by the increase in fiber area following enlargement. A transformation of type II to type I fibers occurred following enlargement for both sexes. Counts of fibers from histological sections revealed that there was a progressive decrease in the fiber number as the section was moved from the belly to the distal end of the muscle. The results of these studies indicate that muscle enlargement in the mouse soleus muscle is due to hypertrophy of the existing muscle fibers.


1993 ◽  
Vol 75 (3) ◽  
pp. 1263-1271 ◽  
Author(s):  
J. Antonio ◽  
W. J. Gonyea

Intermittent stretch of the anterior latissimus dorsi (ALD) muscle produces fiber hypertrophy without fiber hyperplasia (J. Appl. Physiol. 74: 1893–1898, 1993). This study was undertaken to determine if a progressive increase in load and duration of stretch would induce extremely large muscle fiber areas or if the fibers would reach a critical size before the onset of fiber hyperplasia. Weights ranging from 10 to 35% of the bird's mass were attached to the right wing of 26 adult quail while the left wing served as the intra-animal control. The stretch protocol was as follows: day 1 (10% wt), days 2 and 3 (rest), day 4 (15% wt), days 5–7 (rest), day 8 (20% wt), days 9 and 10 (rest), days 11–14 (25% wt), days 15 and 16 (rest), and days 17–38 (35% wt). Birds were killed after 12, 16, 20, 24, and 28 days of stretch not including rest days. Muscle mass increased 174% (12 days), 196% (16 days), 225% (20 days), 264% (24 days), and 318% (28 days). Muscle length increased 60% (12 days), 34% (16 days), 59% (20 days), 50% (24 days), and 51% (28 days). Mean fiber area increased 111% (12 days), 142% (16 days), 75% (20 days), 90% (24 days), and 39% (28 days). Fiber number, which was measured histologically, increased significantly by 82% only in the 28 days of stretch group. The percentage of slow tonic fibers did not change for any of the time points examined.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 78 (1) ◽  
pp. 293-299 ◽  
Author(s):  
J. A. Carson ◽  
M. Yamaguchi ◽  
S. E. Alway

The purpose of this study was to determined whether fibers in the anterior latissimus dorsi (ALD) muscle from aged Japanese quail have decreased hypertrophic or proliferative responses to 30 days of stretch overload compared with fibers from adult birds. Two groups of quail were studied, 12-wk-old quail (adult; n = 16) and 90-wk-old quail (aged; n = 16). The left wing of each bird was overloaded with a weight corresponding to 10% of the bird's body weight, and the right wing served as the intra-animal control. Quails were killed after 30 days of stretch overload. Total fiber number was quantified by counting all the fibers in a transverse section from the midbelly of the ALD muscle. ALD muscles in aged quails retained the capacity to increase their muscle mass (145%), total fiber number (49%), and fiber cross-sectional area (54%) in response to stretch overload. The ALD muscle in aged quail had a significantly lower increase in muscle mass (33%) and mass corrected for nonmuscle tissue (36%) compared with the ALD from young adult birds. Age had no effect on fiber type distribution shifts with stretch. These results suggest that although muscles in old birds have a substantial ability to adapt to enlarge, stretch-induced hypertrophy is attenuated in muscles from old quail.


1990 ◽  
Vol 259 (1) ◽  
pp. C92-C102 ◽  
Author(s):  
S. E. Alway ◽  
W. J. Gonyea ◽  
M. E. Davis

The contributions of fiber hypertrophy and new fiber formation to the onset of stretch-induced muscle enlargement were evaluated in the anterior latissimus dorsi (ALD) of adult Japanese quails, because it was not known whether the mechanisms which initiate new fiber formation were dependent on first achieving significant fiber hypertrophy. A weight corresponding to 10% of the bird's body mass was attached to one wing, and eight birds were killed after each day during the first week of stretch. Muscle mass was significantly increased after 48 h of stretch; however, the elevation in nonmuscle tissue accounted for this increase. Muscle mass corrected for non-muscle tissue was significantly greater than the intra-animal control by the fourth day of stretch. Mean fiber cross-sectional area did not change during days 0-6, but cross-sectional area was 30.0 +/- 17.2% greater than the intra-animal control areas at day 7. Fiber number determined after nitric acid digestion of connective tissue was 27.1 +/- 5.8% greater than the intra-animal control at days 5-7 of stretch, but the number of fibers in the control muscles at days 5 and 6 were lower than at day 0. Thus new fiber formation was not preceded by significant fiber hypertrophy. These results fail to support a mechanism for new fiber formation which involves fiber splitting from hypertrophied myofibers during the first week of stretch.


1992 ◽  
Vol 72 (3) ◽  
pp. 934-943 ◽  
Author(s):  
M. I. Lewis ◽  
W. Z. Zhan ◽  
G. C. Sieck

In adult male hamsters the influence of emphysema (EMP) on the in vitro contractile and fatigue properties and the histochemical, morphometric, and metabolic properties of muscle fibers in the costal diaphragm was determined 6 mo after the administration of either elastase or saline (controls, CTL). Isometric contractile properties were determined in vitro using supramaximal direct muscle stimulation. Optimal fiber length for force generation was significantly shorter in the EMP than in the CTL diaphragm. Maximum specific force (i.e., force per unit area) was 25% lower than CTL. Fatigue resistance was significantly improved in the EMP diaphragm compared with CTL. Diaphragm muscle fibers were classified as type I or II on the basis of histochemical staining for myofibrillar adenosinetriphosphatase after alkaline preincubation. The proportions of type I and II fibers were similar between the two groups. Cross-sectional areas of type II fibers were 30% larger in EMP than in CTL diaphragms. Succinate dehydrogenase activities of both type I and II fibers were higher in EMP than in CTL diaphragms. The number of capillaries surrounding both type I and II fibers increased with EMP, but in proportion to the hypertrophy of these fibers. Thus, capillary density (number of capillaries per fiber cross-sectional area) remained unchanged. We postulate that these contractile, morphometric, and metabolic adaptations reflect an increased activation of the diaphragm in response to the loads imposed by EMP.


1984 ◽  
Vol 56 (1) ◽  
pp. 244-247
Author(s):  
B. F. Timson ◽  
G. A. Dudenhoeffer

The purpose of this study was to determine whether skeletal muscle fiber number could be accurately estimated by the determination of mean fiber dry weight (MFD) and total muscle dry weight. The muscles studied were the soleus, plantaris, gastrocnemius, extensor digitorum longus, tibialis anterior, and biceps brachii of the rat, the anterior latissimus dorsi of the chicken, and the flexor carpi radialis of the cat. Bundles of fibers were carefully separated from the muscle following nitric acid digestion (ND) and placed in groups of similar length. MFD determined from 400 to 800 fibers from each group was used to estimate the number of fibers in the remainder of the group. Estimated fiber number was compared with the fiber number determined in the muscle from the contralateral limb by the ND method. No difference in fiber number was observed between the ND method and the MFD estimation method for any of the muscles used in the study. The results indicate that the MFD estimation method is an accurate and relatively rapid method of fiber number determination in skeletal muscle.


Animals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Min Young Park ◽  
Youn-Chul Ryu ◽  
Chung-Nam Kim ◽  
Kyung-Bo Ko ◽  
Jun-Mo Kim

Estimating meat quality prior to slaughter will be beneficial for the rapid identification of specific traits or poor quality pork compared to a conventional assessment at postmortem. In this study, we identified and quantified myosin heavy chain (MHC) isoforms from a biopsied longissimus thoracis muscle of pigs, and determined their correlation with postmortem muscle fiber characteristics and meat quality. MHC slow and fast isoforms proportions from biopsied samples correlated with postmortem percentage of type I and type IIB muscle fibers, respectively (p < 0.05). The percentage of the biopsied MHC slow isoform showed a positive correlation with pH at 45 min postmortem, and negative correlations with filter-paper fluid uptake and drip loss in pork (p < 0.05). Furthermore, clustering the pigs into three groups based on the biopsied MHC isoform proportions was not only significantly associated with muscle fiber number and proportions of muscle fiber area, but also correlated with pH at 45 min postmortem and the National Pork Producers Council color score (p < 0.05). Collectively, our findings indicate that the biopsied MHC isoforms serve as parameter for estimating meat quality, with the association between the higher proportion of MHC slow isoforms and pH at 45 min postmortem in particular being indicative of better pork quality.


1999 ◽  
Vol 87 (2) ◽  
pp. 634-642 ◽  
Author(s):  
Roland R. Roy ◽  
Steven R. Monke ◽  
David L. Allen ◽  
V. Reggie Edgerton

The effects of 10 wk of functional overload (FO), with and without daily treadmill endurance training, on the cross-sectional area, myonuclear number, and myonuclear domain size of mechanically isolated single fiber segments of the adult rat plantaris were determined. The fibers were typed on the basis of high-resolution gel electrophoresis for separation of specific myosin heavy chain (MHC) isoforms and grouped as type I+ (containing some type I MHC with or without any combination of fast MHCs), type IIa+ (containing some type IIa with or without some type IIx and/or IIb but no type I MHC), and type IIx/b (containing only type IIx and/or IIb MHCs). Type I+ fibers had a higher myonuclear number than did both fast types of fibers in the control and FO, but not in the FO and treadmill trained, rats. All fiber types in both FO groups had a significantly larger (36–90%) cross-sectional area and a significantly higher (61–109%) myonuclear number than did control. The average myonuclear domain size of each fiber type was similar among the three groups, except for a smaller domain size in the type IIx/b fibers of the FO compared with control. In general, these data indicate that during hypertrophy the number of myonuclei increase proportionally to the increase in fiber volume. The maintenance of myonuclear domain size near control values suggests that regulatory mechanisms exist that ensure a tight coupling between the quantity of genetic machinery and the protein requirements of a fiber.


Sign in / Sign up

Export Citation Format

Share Document