Effects of altered CSF [H+] on ventilatory responses to exercise in the awake goat

1988 ◽  
Vol 65 (2) ◽  
pp. 921-927 ◽  
Author(s):  
C. A. Smith ◽  
L. C. Jameson ◽  
J. A. Dempsey

We investigated the effects of selective large changes in the acid-base environment of medullary chemoreceptors on the control of exercise hyperpnea in unanesthetized goats. Four intact and two carotid body-denervated goats underwent cisternal perfusion with mock cerebrospinal fluid (CSF) of markedly varying [HCO-3] (CSF [H+] = 21-95 neq/l; pH 7.68-7.02) until a new steady state of alveolar hypo- or hyperventilation was reached [arterial PCO2 (PaCO2) = 31-54 Torr]. Perfusion continued as the goats completed two levels of steady-state treadmill walking [2 to 4-fold increase in CO2 production (VCO2)]. With normal acid-base status in CSF, goats usually hyperventilated slightly from rest through exercise (-3 Torr PaCO2, rest to VCO2 = 1.1 l/min). Changing CSF perfusate [H+] changed the level of resting PaCO2 (+6 and -4 Torr), but with few exceptions, the regulation of PaCO2 during exercise (delta PaCO2/delta VCO2) remained similar regardless of the new ventilatory steady state imposed by changing CSF [H+]. Thus the gain (slope) of the ventilatory response to exercise (ratio of change in alveolar ventilation to change in VCO2) must have increased approximately 15% with decreased resting PaCO2 (acidic CSF) and decreased approximately 9% with increased resting PaCO2 (alkaline CSF). A similar effect of CSF [H+] on resting PaCO2 and on delta PaCO2/VCO2 during exercise also occurred in two carotid body-denervated goats. Our results show that alteration of the gain of the ventilatory response to exercise occurs on acute alterations in resting PaCO2 set point (via changing CSF [H+]) and that the primary stimuli to exercise hyperpnea can operate independently of central or peripheral chemoreception.

1986 ◽  
Vol 61 (6) ◽  
pp. 2102-2107 ◽  
Author(s):  
C. L. Boetger ◽  
D. S. Ward

The effect of exogenous dopamine on the development of exercise hyperpnea was studied. Using a bicycle ergometer, five subjects performed repetitive square-wave work-load testing from unloaded pedaling to 80% of each subject's estimated anaerobic threshold. The breath-by-breath ventilation (VE), CO2 production (VCO2), and O2 consumption (VO2) responses were analyzed by curve fitting a first-order exponential model. Comparisons were made between control experiments and experiments with a 3-micrograms X kg-1 X min-1 intravenous infusion of dopamine. Steady-state VE, VCO2 and VO2 were unchanged by the dopamine infusion, both during unloaded pedaling and at the heavier work load. The time constants for the increase in VE (tau VE) and VCO2 (tau CO2) were significantly (P less than 0.05) slowed (tau VE = 56.5 +/- 16.4 s for control, and tau VE = 76.4 +/- 26.6 s for dopamine; tau CO2 = 51.5 +/- 10.6 s for control, and tau CO2 = 64.8 +/- 17.4 s for dopamine) (mean +/- SD), but the time constant for VO2 (tau O2) was not significantly affected (tau O2 = 27.5 +/- 11.7 s for control, and tau O2 = 31.0 +/- 10.1 s for dopamine). We conclude that ablation of carotid body chemosensitivity with dopamine slows the transient ventilatory response to exercise while leaving the steady-state response unaffected.


1975 ◽  
Vol 39 (3) ◽  
pp. 354-358 ◽  
Author(s):  
K. Wasserman ◽  
B. J. Whipp ◽  
S. N. Koyal ◽  
M. G. Cleary

To investigate the role of the carotid bodies in exercise hyperpnea and acid-base control, normal and carotid body-resected subjects (CBR) were studied during constant-load and incremental exercise. There was no significant difference in the first-breath ventilatory responses to exercise between the groups; some subjects in each reproducibly exhibited abrupt responses. The subsequent change in Ve toward steady state was slower in the CBR group. The steady-state ventilatory responses were the same in both groups at work rates below the anaerobic threshold (AT). However, above the AT, the hyperpnea was less marked in the CBR group. Ve and acid-base measurements revealed that the CBR group failed to hyperventilate in response to the metabolic acidosis of either constant-load or incremental exercise. We conclude that the carotid bodies 1) are not responsible for the initial exercise hyperpnea, 2) do affect the time course of Ve to its steady state, and 3) are responsible for the respiratory compensation for the metabolic acidosis of exercise.


1995 ◽  
Vol 79 (1) ◽  
pp. 302-311 ◽  
Author(s):  
L. G. Pan ◽  
H. V. Forster ◽  
R. D. Wurster ◽  
A. G. Brice ◽  
T. F. Lowry

In three previously reported studies, we had documented that the normal exercise hyperventilation in ponies is accentuated by carotid body denervation (CBD), not affected by hilar nerve pulmonary vagal denervation (HND), and mildly attenuated by spinal cord ablation of the dorsal lateral columns at L2 (SA). In the present study, we hypothesized that if redundancy of control existed in exercising ponies, then multiple denervations of theoretically important pathways in the same animal might attenuate the ventilatory response to exercise in a way not predictable by the individual lesion experiments alone. There were three major findings in the various combinations of CBD, HND, and SA in ponies during treadmill exercise. First, the combination of CBD with HND or SA resulted generally in an accentuation of the hypocapnia during exercise that was predictable on the basis of CBD alone. However, in one pony that showed a hypercapnic exercise response after SA alone, CBD subsequently caused a greater exercise hypercapnia. Second, HND in a CBD or SA pony did not affect the exercise arterial PCO2 response, which is consistent with previous data showing the lack of an HND effect in otherwise intact ponies. Third, in ponies with all three denervations together, the predominant response was an increase, not a decrease, in the exercise hyperventilation; this increase was greater than that predicted from the individual lesions. We conclude that these data do not provide evidence of redundancy in mechanism for the exercise hyperpnea other than instances of carotid chemoreceptor error sensing when hypercapnia occurs during exercise.


1979 ◽  
Vol 47 (1) ◽  
pp. 112-118 ◽  
Author(s):  
T. V. Santiago ◽  
J. Johnson ◽  
D. J. Riley ◽  
N. H. Edelman

The effects of analgesic doses of morphine on ventilation, arterial blood gas tensions, chemical control of breathing, and the ventilatory response to exercise were studied in six normal subjects. After administration of 0.2 mg/kg morphine, resting ventilation decreased primarily because of a reduction of tidal volume. Ventilatory responses to carbon dioxide and hypoxia were significantly reduced to one-half and one-third of control, respectively. Ventilatory responses at any given level of exercise were significantly reduced after morphine. However, since oxygen consumption during exercise was similarly reduced after morphine, the relationship between ventilation and metabolic rate during steady-state exercise was not altered by the drug. In addition, morphine prolonged the attainment of steady-state ventilation in four of the six subjects, similar to that reported for chemodenervated subjects. The findings suggest that blunting of chemoreception for hypoxia and hypercapnia has no effect upon the link between metabolic rate and ventilation during steady-state exercise, but the hypoxia chemoreflex may be involved in determining the dynamic characteristics of the response.


1985 ◽  
Vol 249 (3) ◽  
pp. R323-R328 ◽  
Author(s):  
B. M. Hitzig ◽  
J. C. Allen ◽  
D. C. Jackson

The role of central chemosensors in the overall ventilatory response of freshwater turtles (Chrysemys scripta elegans) to the addition of CO2 in inspired gas was measured. Centrally mediated ventilatory responses were isolated in the unanesthetized animal by combining CO2 breathing and brain ventricular perfusion with mock cerebrospinal fluid (CSF) of varying acid-base status. Breathing 4.5% CO2 resulted in increases in both ventilatory frequency (f) and tidal volume (VT), with increases in VT providing most of the overall ventilatory change. Alterations in the acid-base status of the perfusate produced highly significant changes in f. VT changes were divorced from the acid-base status of the mock CSF perfusate. We therefore conclude that ventilatory changes in turtles, mediated by central chemosensors, are primarily affected by alterations in f. VT changes, associated with acid-base homeostatic mechanisms, are mediated by receptors outside the blood-brain barrier in these animals. On the basis of these data, we hypothesize that the increase in f observed when turtles breathe 4.5% CO2 is primarily mediated by the central chemosensors.


2006 ◽  
Vol 100 (1) ◽  
pp. 13-19 ◽  
Author(s):  
C. A. Smith ◽  
J. R. Rodman ◽  
B. J. A. Chenuel ◽  
K. S. Henderson ◽  
J. A. Dempsey

We assessed the speed of the ventilatory response to square-wave changes in alveolar Pco2 and the relative gains of the steady-state ventilatory response to CO2 of the central chemoreceptors vs. the carotid body chemoreceptors in intact, unanesthetized dogs. We used extracorporeal perfusion of the reversibly isolated carotid sinus to maintain normal tonic activity of the carotid body chemoreceptor while preventing it from sensing systemic changes in CO2, thereby allowing us to determine the response of the central chemoreceptors alone. We found the following. 1) The ventilatory response of the central chemoreceptors alone is 11.2 (SD = 3.6) s slower than when carotid bodies are allowed to sense CO2 changes. 2) On average, the central chemoreceptors contribute ∼63% of the gain to steady-state increases in CO2. There was wide dog-to-dog variability in the relative contributions of central vs. carotid body chemoreceptors; the central exceeded the carotid body gain in four of six dogs, but in two dogs carotid body gain exceeded central CO2 gain. If humans respond similarly to dogs, we propose that the slower response of the central chemoreceptors vs. the carotid chemoreceptors prevents the central chemoreceptors from contributing significantly to ventilatory responses to rapid, transient changes in arterial Pco2 such as those after periods of hypoventilation or hyperventilation (“ventilatory undershoots or overshoots”) observed during sleep-disordered breathing. However, the greater average responsiveness of the central chemoreceptors to brain hypercapnia in the steady-state suggests that these receptors may contribute significantly to ventilatory overshoots once unstable/periodic breathing is fully established.


1984 ◽  
Vol 57 (6) ◽  
pp. 1796-1802 ◽  
Author(s):  
T. Chonan ◽  
Y. Kikuchi ◽  
W. Hida ◽  
C. Shindoh ◽  
H. Inoue ◽  
...  

We examined the relationship between response to hypercapnia and ventilatory response to exercise under graded anesthesia in eight dogs. The response to hypercapnia was measured by the CO2 rebreathing method under three grades of chloralose-urethan anesthesia. The degrees of response to hypercapnia (delta VE/delta PETCO2, 1 X min-1 X Torr-1) in light (L), moderate (M), and deep (D) anesthesia were 0.40 +/- 0.05 (mean +/- SE), 0.24 +/- 0.03, and 0.10 +/- 0.02, respectively, and were significantly different from each other. Under each grade of anesthesia, exercise was performed by electrically stimulating the bilateral femoral and sciatic nerves for 4 min. The time to reach 63% of full response of the increase in ventilation (tauVE) after beginning of exercise was 28.3 +/- 1.5, 38.1 +/- 5.2, and 56.0 +/- 6.1 s in L, M, and D, respectively. During steady-state exercise, minute ventilation (VE) in L, M, and D significantly increased to 6.17 +/- 0.39, 5.14 +/- 0.30, and 3.41 +/- 0.16 1 X min-1, from resting values of 3.93 +/- 0.34, 2.97 +/- 0.17, and 1.69 +/- 0.14 1 X min-1, respectively, while end-tidal CO2 tension (PETCO2) in L decreased significantly to 34.8 +/- 0.9 from 35.7 +/- 0.9, did not change in M (38.9 +/- 1.1 from 38.9 +/- 0.8), and increased significantly in D to 47.3 +/- 1.9 from 45.1 +/- 1.7 Torr.(ABSTRACT TRUNCATED AT 250 WORDS)


1979 ◽  
Vol 46 (3) ◽  
pp. 491-497 ◽  
Author(s):  
D. B. Jennings

During acute hypercapnia (5% carbon dioxide) in resting conscious dogs, ventilation (Ve) attained a new level above control within 5 min, but rectal temperature decreased gradually to reach a steady state lower than control after 40–60 min. At 2 days of breathing 5% carbon dioxide, Ve remained elevated, as in acute hypercapnia, but Paco2 increased and the threshold of the ventilatory response shifted to a higher Paco2. By 2 days of hypercapnia, rectal temperature (Tr) had returned to normal, reflecting an alteration of hypothalamic temperature control that might be expected to result in enhanced respiratory drive. Surprisingly, despite blood acid-base compensation between 2 and 14 days of hypercapnia, Ve did not decrease, whereas Paco2 decreased to the level observed during acute hypercapnia, and the threshold of the ventilatory response returned to normal. Therefore, at 14 days of respiratory acidosis, acid-based compensation resulting from increase in bicarbonate was not associated with reduced respiratory drive. This result could not be accounted for on the basis of a temperature mechanism because temperature adaptation occurred earlier.


1983 ◽  
Vol 54 (4) ◽  
pp. 874-879 ◽  
Author(s):  
D. P. White ◽  
N. J. Douglas ◽  
C. K. Pickett ◽  
J. V. Weil ◽  
C. W. Zwillich

Previous investigation has demonstrated that progesterone, a hormone found in premenopausal women, is a ventilatory stimulant. However, fragmentary data suggest that normal women may have lower ventilatory responses to chemical stimuli than men, in whom progesterone is found at low levels. As male-female differences have not been carefully studied, we undertook a systematic comparison of resting ventilation and ventilatory responses to chemical stimuli in men and women. Resting ventilation was found to correlate closely with CO2 production in all subjects (r = 0.71, P less than 0.001), but women tended to have a greater minute ventilation per milliliter of CO2 produced (P less than 0.05) and consequently a lower CO2 partial pressure (PCO2) (men 35.1 +/- 0.5 Torr, women 33.2 +/- 0.5 Torr; P less than 0.02). Women were also found to have lower tidal volumes, even when corrected from body surface area (BSA), and greater respiratory frequency than comparable males. The hypoxic ventilatory response (HVR) quantitated by the shape parameter A was significantly greater in men [167 +/- 22 (SE)] than in women (109 +/- 13; P less than 0.05). In men this hypoxic response was found to correlate closely with O2 consumption (r = 0.75, P less than 0.001) but with no measure of size or metabolic rate in women. The hypercapnic ventilatory response, expressed as the slope of ventilation vs. PCO2, was also greater in men (2.30 +/- 0.23) than in women (1.58 +/- 0.19, P less than 0.05). Finally women tended to have higher ventilatory responses in the luteal than in the follicular menstrual phase, but this was significant only for HVR (P less than 0.05). Women, with relatively higher resting ventilation, have lower responses to hypoxia and hypercapnia.


1996 ◽  
Vol 199 (4) ◽  
pp. 815-823
Author(s):  
J Stinner ◽  
M Grguric ◽  
S Beaty

There is increasing evidence that many amphibian and reptilian species use relatively slow ion-exchange mechanisms in addition to ventilation to adjust pH as body temperature changes. Large changes in blood bicarbonate concentration with changes in temperature have previously been reported for the snake Coluber constrictor. The purpose of the present study was to determine the ventilatory and pH adjustments associated with the increase in CO2 stores when the snakes are cooled. Body temperature was lowered from 30 to 10 °C within 4 h, at which time measurements of inspired minute ventilation (V.air), O2 consumption (VO2) and CO2 production (V.CO2) were started and continued for 56 h. The decrease in temperature produced a transient fall in the respiratory exchange ratio (V.CO2/VO2) to 0.2-0.3 and a steady-state value of 0.65±0.14 (mean ± s.d., N=7) was not achieved until about 35 h. There were concomitant transient reductions in V.air and V.air/V.O2. However, V.air/V.CO2 initially increased, with a corresponding reduction in arterial PCO2 (PaCO2) and increase in arterial pH. By 35 h, V.air/V.CO2 had decreased and PaCO2 had increased to steady-state levels, but pH decreased very little because of a gradual increase in bicarbonate concentration. We conclude that the drop in temperature imposed a metabolic acidosis for approximately 35 h because of the time required to increase bicarbonate concentration, and that the acidosis was compensated for by an elevated V.air/V.CO2. Steady-state breathing and acid-base status were not achieved until the relatively slow increase in CO2 stores had been completed.


Sign in / Sign up

Export Citation Format

Share Document