Thyroarytenoid muscle activity during hypoxia in awake lambs

1990 ◽  
Vol 69 (6) ◽  
pp. 1998-2003 ◽  
Author(s):  
J. P. Praud ◽  
E. Canet ◽  
D. Dalle ◽  
A. Bairam ◽  
M. Bureau

It is generally accepted that hypoxia in early life results in active laryngeal braking of expiratory airflow via the recruitment of glottic adductor muscles. We examined the electromyogram expiratory activity of the thyroarytenoid muscle in seven 11- to 18-day-old awake nonsedated lambs exposed to an inspired O2 fraction of 0.08 for 18 min. The lambs breathed through a face mask and a pneumotachograph. During baseline prehypoxic breathing, the thyroarytenoid muscle was largely inactive in each awake lamb. Unexpectedly, no recruitment of the thyroarytenoid muscle was recorded during hypoxia in any of the seven lambs; simultaneous examination of the flow-volume curves revealed an absence of expiratory airflow braking. Also unexpectedly, marked expiratory activity of the thyroarytenoid muscle was recorded, with each expiration occurring within less than 10 s after the return to room air. The resulting delay of expiration was apparent in the flow-volume loops. Thus, in awake 11- to 18-day-old lambs, 1) active expiratory glottic adduction is absent during hypoxia and 2) a return from hypoxia to room air results in prolonged expiration as well as active glottic adduction that controls end-expiratory lung volume.

1989 ◽  
Vol 67 (3) ◽  
pp. 1192-1197 ◽  
Author(s):  
F. Ratjen ◽  
R. Zinman ◽  
A. R. Stark ◽  
L. E. Leszczynski ◽  
M. E. Wohl

Total respiratory system compliance (Crs) at volumes above the tidal volume (VT) was studied by use of the expiratory volume clamping (EVC) technique in 10 healthy sleeping unsedated newborn infants. Flow was measured with a pneumotachograph attached to a face mask and integrated to yield volume. Volume changes were confirmed by respiratory inductance plethysmography. Crs measured by EVC was compared with Crs during tidal breathing determined by the passive flow-volume (PFV) technique. Volume increases of approximately 75% VT were achieved with three to eight inspiratory efforts during expiratory occlusions. Crs above VT was consistently greater than during tidal breathing (P less than 0.0005). This increase in Crs likely reflects recruitment of lung units that are closed or atelectatic in the VT range. Within the VT range, Crs measured by PFV was compared with that obtained by the multiple-occlusion method (MO). PFV yielded greater values of Crs than MO (P less than 0.01). This may be due to braking of expiratory airflow after the release of an occlusion or nonlinearity of Crs. Thus both volume recruitment and airflow retardation may affect the measurement of Crs in unsedated newborn infants.


1992 ◽  
Vol 73 (1) ◽  
pp. 248-259 ◽  
Author(s):  
E. J. Kobylarz ◽  
J. A. Daubenspeck

We used an esophageal electrode to measure the amplitude and neural inspiratory and expiratory (N TE) timing responses of crural diaphragmatic electrical activity in response to flow-resistive (R) and elastic (E) loads at or below the threshold for conscious detection, applied pseudorandomly to the oral airway of eight normal subjects. We observed a rapid first-breath neural reflex that modified respiratory timing such that N TE lengthened significantly in response to R loads in six of eight subjects and shortened in response to E loading in six of seven subjects. The prolongation of N TE with R loading resulted primarily from lengthening the portion of N TE during which phasic activity in the diaphragm is absent (TE NDIA), whereas E loading shortened N TE mainly by reducing TE NDIA. Most subjects responded to both types of loading by decreasing mean tonic diaphragmatic activity, the average level of muscle activity that exists when no phasic changes are occurring, as well as its variability. The observed timing responses are consistent in direction with optimally adaptive pattern regulation, whereas the modulation of tonic activity may be useful in neural regulation of end-expiratory lung volume.


2003 ◽  
Vol 94 (5) ◽  
pp. 1949-1954 ◽  
Author(s):  
Philippe Reix ◽  
Julie Arsenault ◽  
Valérie Dôme ◽  
Pierre-Hugues Fortier ◽  
Joëlle Rouillard Lafond ◽  
...  

Our laboratory previously reported that active glottal closure was present in 90% of spontaneous central apneas in premature lambs while maintaining a high-apneic lung volume (Renolleau S, Letourneau P, Niyonsenga T, and Praud JP. Am J Respir Crit Care Med 159: 1396–1404, 1999.) The present study aimed at testing whether this mechanism limits postapnea oxygen desaturation. Four premature lambs were instrumented for recording states of alertness, thyroarytenoid muscle and diaphragm electromyographic (EMG) activity, nasal airflow, lung volume changes, and pulse oximetry. One thousand four hundred fifty-two spontaneous central apneas (isolated or during periodic breathing) were analyzed in nonsedated lambs. Apneas, with high lung volume maintained by active glottal closure, were compared with apneas, with a tracheostomy opened at apnea onset. Oxygen desaturation slopes were lower when high-apneic lung volume was actively maintained during both wakefulness and quiet sleep. Furthermore, oxygen desaturation slopes were lower after isolated apneas with continuous thyroarytenoid EMG during wakefulness, compared with apneas with noncontinuous thyroarytenoid EMG (= glottis opened shortly after apnea onset). These results highlight the importance of maintaining high-alveolar oxygen stores during central apneas by active glottal closure to limit desaturation in newborns.


2021 ◽  
Vol 11 (1) ◽  
pp. 69
Author(s):  
Natalia Merkulyeva ◽  
Vsevolod Lyakhovetskii ◽  
Aleksandr Veshchitskii ◽  
Oleg Gorskii ◽  
Pavel Musienko

The optimization of multisystem neurorehabilitation protocols including electrical spinal cord stimulation and multi-directional tasks training require understanding of underlying circuits mechanisms and distribution of the neuronal network over the spinal cord. In this study we compared the locomotor activity during forward and backward stepping in eighteen adult decerebrated cats. Interneuronal spinal networks responsible for forward and backward stepping were visualized using the C-Fos technique. A bi-modal rostrocaudal distribution of C-Fos-immunopositive neurons over the lumbosacral spinal cord (peaks in the L4/L5 and L6/S1 segments) was revealed. These patterns were compared with motoneuronal pools using Vanderhorst and Holstege scheme; the location of the first peak was correspondent to the motoneurons of the hip flexors and knee extensors, an inter-peak drop was presumably attributed to the motoneurons controlling the adductor muscles. Both were better expressed in cats stepping forward and in parallel, electromyographic (EMG) activity of the hip flexor and knee extensors was higher, while EMG activity of the adductor was lower, during this locomotor mode. On the basis of the present data, which showed greater activity of the adductor muscles and the attributed interneuronal spinal network during backward stepping and according with data about greater demands on postural control systems during backward locomotion, we suppose that the locomotor networks for movements in opposite directions are at least partially different.


PEDIATRICS ◽  
1983 ◽  
Vol 72 (4) ◽  
pp. 517-522
Author(s):  
S. Godfrey ◽  
E. Bar-Yishay ◽  
I. Arad ◽  
L. I. Landau ◽  
L. M. Taussig

Partial expiratory flow-volume maneuvers have been performed on nine occasions on six infants with a variety of pulmonary problems using a new tech nique for thoracic compression. The infants were placed within an inflatable bag that was, itself, within a canvas bag. By sudden controlled inflation of the inner bag at end inspiration, partial expiratory flow-volume curves were generated and recorded by means of a face mask and pneumotachograph. By comparing these flow results with those airway resistance and lung volume measurements obtained from the infants in whole body plethysmography and by noting the effect of inhaling a helium/oxygen gas mixture, it was possible to partition the airway obstruction between large and small airways. The presence of small airway obstruction was noted in the absence of changes in airway resistance or lung volume in several instances. A complete evaluation of airway function should include this test of forced expiration for greater understanding and treatment of lung disease in infancy.


1992 ◽  
Vol 72 (3) ◽  
pp. 881-887 ◽  
Author(s):  
Y. Wakai ◽  
M. M. Welsh ◽  
A. M. Leevers ◽  
J. D. Road

Expiratory muscle activity has been shown to occur in awake humans during lung inflation; however, whether this activity is dependent on consciousness is unclear. Therefore we measured abdominal muscle electromyograms (intramuscular electrodes) in 13 subjects studied in the supine position during wakefulness and non-rapid-eye-movement sleep. Lung inflation was produced by nasal continuous positive airway pressure (CPAP). CPAP at 10–15 cmH2O produced phasic expiratory activity in two subjects during wakefulness but produced no activity in any subject during sleep. During sleep, CPAP to 15 cmH2O increased lung volume by 1,260 +/- 215 (SE) ml, but there was no change in minute ventilation. The ventilatory threshold at which phasic abdominal muscle activity was first recorded during hypercapnia was 10.3 +/- 1.1 l/min while awake and 13.8 +/- 1 l/min while asleep (P less than 0.05). Higher lung volumes reduced the threshold for abdominal muscle recruitment during hypercapnia. We conclude that lung inflation alone over the range that we studied does not alter ventilation or produce recruitment of the abdominal muscles in sleeping humans. The internal oblique and transversus abdominis are activated at a lower ventilatory threshold during hypercapnia, and this activation is influenced by state and lung volume.


1994 ◽  
Vol 76 (5) ◽  
pp. 2015-2025 ◽  
Author(s):  
B. K. Erickson ◽  
H. V. Forster ◽  
T. F. Lowry ◽  
L. G. Pan ◽  
M. J. Korducki ◽  
...  

The objective of the present study was to determine whether lung and diaphragm afferents contribute to the changes in respiratory muscle activity when end-expiratory lung volume (EELV) is changed in ponies. We studied the responses of the diaphragm and the transversus abdominis (TA) muscles to passive increases in EELV in awake intact (I), diaphragm-deafferented (DD), pulmonary vagal- (hilar nerve) denervated (HND), and DD + HND ponies. Negative pressure of -10 or -20 cmH2O applied around the ponies′ torsos [positive transrespiratory (TR) pressure] increased (P < 0.05) EELV in all ponies; the increases were more (P < 0.05) in HND and less (P < 0.05) in DD than in I ponies. In I ponies, positive TR pressure increased (P < 0.05) the rate of rise of the integrated diaphragmatic electromyogram (EMG), reflecting increased drive to the muscle. This increase was less (P < 0.05) in DD and HND than in I ponies. In DD + HND ponies, there was no significant (P > 0.10) change in drive to the diaphragm during positive TR pressure. In I ponies, positive TR pressure increased (P < 0.05) the duration and mean activity of the TA EMG. In HND and DD + HND ponies, the TA EMG was not altered by positive TR pressure. I and DD ponies decreased (P < 0.05) breathing frequency but maintained tidal volume (VT) during positive TR pressure. HND and DD+HND ponies increased breathing frequency (P < 0.05) and decreased (P < 0.05) VT during positive TR pressure. We conclude that, during positive TR pressure when the diaphragm is presumably at a mechanical disadvantage, diaphragm and vagal afferents mediate increased drive to the diaphragm to prevent VT from decreasing. In addition, during positive TR pressure, vagal afferents mediate an increase in duration of TA activity, which minimizes the increase in EELV.


1988 ◽  
Vol 64 (5) ◽  
pp. 2240-2244 ◽  
Author(s):  
J. Ampil ◽  
J. I. Carlin ◽  
R. L. Johnson

To develop a rebreathing method for lung volumes, cardiac output with acetylene, and CO diffusing capacity in awake exercising dogs, we have modified and adapted the low-dead-space mask of Montefusco et al. (Angiology 34: 340–354, 1983). We have simplified the fabrication procedure, allowing the physiologist to make the device from parts that can be prefabricated before each dog is custom fitted with the mouthpiece. This decreases the anesthesia time required to custom fit the mouthpiece to each dog. We have also reduced the weight of the mask, making it more tolerable during exercise. We have validated that the mask is leak-free by having the dog rebreathe an inert insoluble gas, He, until equilibration is achieved between the bag and lung. Preliminary measurements of lung volume, cardiac output with acetylene, and CO diffusing capacity have been made during exercise.


2001 ◽  
Vol 90 (3) ◽  
pp. 763-769 ◽  
Author(s):  
A. Hassan ◽  
J. Gossage ◽  
D. Ingram ◽  
S. Lee ◽  
A. D. Milner

Although the Hering-Breuer inflation reflex (HBIR) is active within tidal breathing range in the neonatal period, there is no information regarding whether a critical volume has to be exceeded before any effect can be observed. To explore this, effects of multiple airway occlusions on inspiratory and expiratory timing were measured throughout tidal breathing range using a face mask and shutter system. In 20 of the 22 healthy infants studied, there was significant shortening of inspiration because the volume at which occlusion occurred rose from functional residual capacity (FRC) to end-inspiratory volume [14.9% reduction in inspiratory time (per ml/kg increase in lung volume at occlusion)]. All infants showed a significant increase in expiratory time [17.1% increase (per ml/kg increase in lung volume at occlusion)]. Polynomial regression analyses revealed a progressive increase in strength of HBIR from FRC to ∼4 ml/kg above FRC. Eighteen infants showed no further shortening of inspiratory time and 10 infants no further lengthening of expiratory time with increasing occlusion volumes, indicating maximal stimulation of the reflex had been achieved. There was a significant relationship between strength of HBIR and respiratory rate, suggesting that HBIR modifies the breathing pattern in the neonatal period.


Sign in / Sign up

Export Citation Format

Share Document