Myosin isoforms in mammalian skeletal muscle

1994 ◽  
Vol 77 (2) ◽  
pp. 493-501 ◽  
Author(s):  
S. Schiaffino ◽  
C. Reggiani

Skeletal muscles of different mammalian species contain four major myosin heavy-chain (MHC) isoforms: the “slow” or beta-MHC and the three “fast” IIa-, IIx-, and IIb-MHCs; and three major myosin light-chain (MLC) isoforms, the “slow” MLC1s and the two “fast” MLC1f and MLC3f. The differential distribution of the MHCs defines four major fiber types containing a single MHC isoform and a number of intermediate hybrid fiber populations containing both beta/slow- and IIa-MHC, IIa- and IIx-MHC, or IIx- and IIb-MHC. The IIa-, IIx-, and IIb-MHCs were first detected in neonatal muscles, and their expression in developing and adult muscle is regulated by neural, hormonal, and mechanical factors. The transcriptional mechanisms responsible for the fiber type-specific regulation of MHC and MLC gene expression are not known and are presently being explored by in vivo transfection experiments. The functional role of MHC isoforms has been in part clarified by correlated biochemical-physiological studies on single skinned fibers: these studies, in agreement with results from in vitro motility assays, indicate that both MHC and MLC isoforms determine the maximum velocity of shortening of skeletal muscle fibers.

Physiology ◽  
2007 ◽  
Vol 22 (4) ◽  
pp. 269-278 ◽  
Author(s):  
Stefano Schiaffino ◽  
Marco Sandri ◽  
Marta Murgia

A variety of fiber types with different contractile and metabolic properties is present in mammalian skeletal muscle. The fiber-type profile is controlled by nerve activity via specific signaling pathways, whose identification may provide potential therapeutic targets for the prevention and treatment of metabolic and neuromuscular diseases.


2001 ◽  
Vol 90 (3) ◽  
pp. 1119-1124 ◽  
Author(s):  
Dirk Pette

More than 40 years ago, the nerve cross-union experiment of Buller, Eccles, and Eccles provided compelling evidence for the essential role of innervation in determining the properties of mammalian skeletal muscle fibers. Moreover, this experiment revealed that terminally differentiated muscle fibers are not inalterable but are highly versatile entities capable of changing their phenotype from fast to slow or slow to fast. With the use of various experimental models, numerous studies have since confirmed and extended the notion of muscle plasticity. Together, these studies demonstrated that motoneuron-specific impulse patterns, neuromuscular activity, and mechanical loading play important roles in both the maintenance and transition of muscle fiber phenotypes. Depending on the type, intensity, and duration of changes in any of these factors, muscle fibers adjust their phenotype to meet the altered functional demands. Fiber-type transitions resulting from multiple qualitative and quantitative changes in gene expression occur sequentially in a regular order within a spectrum of pure and hybrid fiber types.


2011 ◽  
Vol 301 (4) ◽  
pp. R916-R925 ◽  
Author(s):  
Krystyna Banas ◽  
Charlene Clow ◽  
Bernard J. Jasmin ◽  
Jean-Marc Renaud

It has long been suggested that in skeletal muscle, the ATP-sensitive K+ channel (KATP) channel is important in protecting energy levels and that abolishing its activity causes fiber damage and severely impairs function. The responses to a lack of KATP channel activity vary between muscles and fibers, with the severity of the impairment being the highest in the most glycolytic muscle fibers. Furthermore, glycolytic muscle fibers are also expected to face metabolic stress more often than oxidative ones. The objective of this study was to determine whether the t-tubular KATP channel content differs between muscles and fiber types. KATP channel content was estimated using a semiquantitative immunofluorescence approach by staining cross sections from soleus, extensor digitorum longus (EDL), and flexor digitorum brevis (FDB) muscles with anti-Kir6.2 antibody. Fiber types were determined using serial cross sections stained with specific antimyosin I, IIA, IIB, and IIX antibodies. Changes in Kir6.2 content were compared with changes in CaV1.1 content, as this Ca2+ channel is responsible for triggering Ca2+ release from sarcoplasmic reticulum. The Kir6.2 content was the lowest in the oxidative soleus and the highest in the glycolytic EDL and FDB. At the individual fiber level, the Kir6.2 content within a muscle was in the order of type IIB > IIX > IIA ≥ I. Interestingly, the Kir6.2 content for a given fiber type was significantly different between soleus, EDL, and FDB, and highest in FDB. Correlations of relative fluorescence intensities from the Kir6.2 and CaV1.1 antibodies were significant for all three muscles. However, the variability in content between the three muscles or individual fibers was much greater for Kir6.2 than for CaV1.1. It is suggested that the t-tubular KATP channel content increases as the glycolytic capacity increases and as the oxidative capacity decreases and that the expression of KATP channels may be linked to how often muscles/fibers face metabolic stress.


2002 ◽  
Vol 27 (4) ◽  
pp. 423-448 ◽  
Author(s):  
Dirk Pette

Mammalian skeletal muscle fibers display a great adaptive potential. This potential results from the ability of muscle fibers to adjust their molecular, functional, and metabolic properties in response to altered functional demands, such as changes in neuromuscular activity or mechanical loading. Adaptive changes in the expression of myofibrillar and other protein isoforms result in fiber type transitions. These transitions occur in a sequential order and encompass a spectrum of pure and hybrid fibers. Depending on the quality, intensity, and duration of the alterations in functional demand, muscle fibers may undergo functional transitions in the direction of slow or fast, as well as metabolic transitions in the direction of aerobic-oxidative or glycotytic. The maximum range of possible transitions in either direction depends on the fiber phenotype and is determined by its initial location in the fiber spectrum. Key words: Ca-sequestering proteins, energy metabolism, fiber type transition, myofibrillar protein isofonns, myosin, neuromuscular activity


1999 ◽  
Vol 86 (3) ◽  
pp. 985-992 ◽  
Author(s):  
Michael I. Lewis ◽  
Mario Fournier ◽  
Amelia Y. Yeh ◽  
Paul E. Micevych ◽  
Gary C. Sieck

The aim of this study was to evaluate the potential mechanisms underlying the improved contractility of the diaphragm (Dia) in adult intact male hamsters after nandrolone (Nan) administration, given subcutaneously over 4 wk via a controlled-release capsule (initial dose: 4.5 mg ⋅ kg−1 ⋅ day−1; with weight gain, final dose: 2.7 mg ⋅ kg−1 ⋅ day−1). Control (Ctl) animals received blank capsules. Isometric contractile properties of the Dia were determined in vitro after 4 wk. The maximum velocity of unloaded shortening ( V o) was determined in vitro by means of the slack test. Dia fibers were classified histochemically on the basis of myofibrillar ATPase staining and fiber cross-sectional area (CSA), and the relative interstitial space was quantitated. Ca2+-activated myosin ATPase activity was determined by quantitative histochemistry in individual diaphragm fibers. Myosin heavy chain (MHC) isoforms were identified electrophoretically, and their proportions were determined by using scanning densitometry. Peak twitch and tetanic forces, as well as V o, were significantly greater in Nan animals compared with Ctl. The proportion of type IIa Dia fibers was significantly increased in Nan animals. Nan increased the CSA of all fiber types (26–47%), whereas the relative interstitial space decreased. The relative contribution of fiber types to total costal Dia area was preserved between the groups. Proportions of MHC isoforms were similar between the groups. There was a tendency for increased expression of MHC2B with Nan. Ca2+-activated myosin ATPase activity was increased 35–39% in all fiber types in Nan animals. We conclude that, after Nan administration, the increase in Dia specific force results from the relatively greater Dia CSA occupied by hypertrophied muscle fibers, whereas the increased ATPase activity promotes a higher rate of cross-bridge turnover and thus increased V o. We speculate that Nan in supraphysiological doses have the potential to offset or ameliorate conditions associated with enhanced proteolysis and disordered protein turnover.


2000 ◽  
Vol 278 (4) ◽  
pp. R891-R896 ◽  
Author(s):  
G. Supinski ◽  
D. Nethery ◽  
T. M. Nosek ◽  
L. A. Callahan ◽  
D. Stofan ◽  
...  

Recent work indicates that endotoxemia elicits severe reductions in skeletal muscle force-generating capacity. The subcellular alterations responsible for these decrements have not, however, been fully characterized. One possibility is that the contractile proteins per se are altered in endotoxemia and another is that the mechanism by which these proteins are activated is affected. The purpose of the present study was to assess the effects of endotoxin administration on the contractile proteins by examining the maximum calcium-activated force (Fmax) and calcium sensitivity of single Triton-skinned fibers of diaphragm, soleus, and extensor digitorum longus (EDL) muscles taken from control and endotoxin-treated (8 mg/kg) rats. Fibers were mounted on a force transducer and sequentially activated by serial immersion in solutions of increasing Ca2+ concentration (i.e., pCa 6.0 to pCa 5.0); force vs. pCa data were fit to the Hill equation. All fibers were typed at the conclusion of studies using gel electrophoresis. Fmax, the calcium concentration required for half-maximal activation (Ca50), and the Hill coefficient were compared as a function of muscle and fiber type for the control and endotoxin-treated animals. Control group Fmax was similar for diaphragm, soleus, and EDL fibers, i.e., 112.34 ± 2.64, 111.55 ± 3.66, and 104.05 ± 4.33 kPa, respectively. Endotoxin administration reduced the average Fmax for fibers from all three muscles to 80.25 ± 2.30, 72.47 ± 2.97, and 78.32 ± 2.43 kPa, respectively ( P < 0.001 for comparison of each to control). All fiber types in diaphragm, soleus, and EDL muscles manifested similar endotoxin-related reductions in Fmax. The Ca50 and the Hill coefficient for all fiber types and all muscles were unaffected by endotoxin administration. We speculate that these alterations in the intrinsic properties of the contractile proteins represent a major mechanism by which endotoxemia reduces muscle force-generating capacity.


1983 ◽  
Vol 245 (2) ◽  
pp. H265-H275 ◽  
Author(s):  
B. G. Mackie ◽  
R. L. Terjung

Blood flow to fast-twitch red (FTR), fast-twitch white (FTW), and slow-twitch red (STR) muscle fiber sections of the gastrocnemius-plantaris-soleus muscle group was determined using 15 +/- 3-microns microspheres during in situ stimulation in pentobarbital-anesthetized rats. Steady-state blood flows were assessed during the 10th min of contraction using twitch (0.1, 0.5, 1, 3, and 5 Hz) and tetanic (7.5, 15, 30, 60, and 120/min) stimulation conditions. In addition, an earlier blood flow determination was begun at 3 min (twitch series) or at 30 s (tetanic series) of stimulation. Blood flow was highest in the FTR (220-240 ml X min-1 X 100 g-1), intermediate in the STR (140), and lowest in the FTW (70-80) section during tetanic contraction conditions estimated to coincide with the peak aerobic function of each fiber type. These blood flows are fairly proportional to the differences in oxidative capacity among fiber types. Further, their absolute values are similar to those predicted from the relationship between blood flow and oxidative capacity found by others for dog and cat muscles. During low-frequency contraction conditions, initial blood flow to the FTR and STR sections were excessively high and not dependent on contraction frequency. However, blood flows subsequently decreased to values in keeping with the relative energy demands. In contrast, FTW muscle did not exhibit this time-dependent relative hyperemia. Thus, besides the obvious quantitative differences between skeletal muscle fiber types, there are qualitative differences in blood flow response during contractions. Our findings establish that, based on fiber type composition, a heterogeneity in blood flow distribution can occur within a whole muscle during contraction.


1997 ◽  
Vol 22 (4) ◽  
pp. 307-327 ◽  
Author(s):  
Robert S. Staron

This brief review attempts to summarize a number of studies on the delineation, development, and distribution of human skeletal muscle fiber types. A total of seven fiber types can be identified in human limb and trunk musculature based on the pH stability/ability of myofibrillar adenosine triphosphatase (mATPase). For most human muscles, mATPase-based fiber types correlate with the myosin heavy chain (MHC) content. Thus, each histochemically identified fiber has a specific MHC profile. Although this categorization is useful, it must be realized that muscle fibers are highly adaptable and that innumerable fiber type transients exist. Also, some muscles contain specific MHC isoforms and/or combinations that do not permit routine mATPase-based fiber typing. Although the major populations of fast and slow are, for the most part, established shortly after birth, subtle alterations take place throughout life. These changes appear to relate to alterations in activity and/or hormonal levels, and perhaps later in life, total fiber number. Because large variations in fiber type distribution can be found within a muscle and between individuals, interpretation of data gathered from human muscle is often difficult. Key words: aging, myosin heavy chains, myogenesis, myofibrillar adenosine triphosphate


Sign in / Sign up

Export Citation Format

Share Document