Nasal vestibule wall elasticity: interactions with a nasal dilator strip

1999 ◽  
Vol 86 (5) ◽  
pp. 1638-1643 ◽  
Author(s):  
T. C. Amis ◽  
J. P. Kirkness ◽  
E. di Somma ◽  
J. R. Wheatley

We studied the effect of an adhesive external nasal dilator strip (ENDS) on external nasal geometry in 20 healthy Caucasian adults (10 men, 10 women; age 21–45 yr). The recoil force exerted by ENDS was estimated by bending the device ( n = 10) with known weights. In the horizontal direction, a small/medium-sized ENDS in situ exerted a unilateral recoil force of 21.4–22.6 g. Application of ENDS resulted in a displacement of the lateral nasal vestibule walls that had both anterosuperior and horizontal components and that was maintained over an 8-h period. The resultant unilateral nasal vestibule wall displacement at the tip of the device was at 47.6 ± 2.0° to the horizontal (as related to the plane of the device when in situ) and had a magnitude of 3.5 ± 0.1 mm. ENDS increased external nasal cross-sectional area by 23.0–65.3 mm2. Nasal vestibule wall compliance was estimated at 0.05–0.16 mm/g. Thus ENDS applies a relatively constant abducting force irrespective of nasal width. Variable responsiveness to ENDS may be related to differences in elastic properties of the nasal vestibule wall.

Author(s):  
Andreas Dutzler ◽  
◽  
Christian Buzzi ◽  
Martin Leitner ◽  
◽  
...  

Elastomer components are used in both primary and secondary spring stages in bogies of rail vehicles. The design of spring components of a bogie requires knowledge of the calculation of the elastic properties of these components. An elastomer spring component is typically analyzed in the dimension to be investigated. Calculated force-displacement curves are directly related to the material and dimension of the component itself. The objective of this paper is to establish generalized or, in other words, universally valid force-displacement characteristics by breaking the entanglement with component size. The advantage of this approach is the extended validity of the results for a specific spring shape of any size. The simulations are performed only once for each shape and may be converted to any other size using the proposed methodology. A numerical study of a layer spring with rectangular cross-sectional area and fixed edges on both top and bottom sides serves as a reference example.


2021 ◽  
Author(s):  
Sandra Vázquez-Martín ◽  
Thomas Kuhn ◽  
Salomon Eliasson

Abstract. Meteorological forecast and climate models require good knowledge of the microphysical properties of hydrometeors and the atmospheric snow and ice crystals in clouds. For instance, their size, cross-sectional area, shape, mass, and fall speed. Especially shape is an important parameter in that it strongly affects the scattering properties of ice particles, and consequently their response to remote sensing techniques. The fall speed and mass of ice particles are other important parameters both for numerical forecast models and for the representation of snow and ice clouds in climate models. In the case of fall speed, it is responsible for the rate of removal of ice from these models. The particle mass is a key quantity that connects the cloud microphysical properties to radiative properties. Using an empirical relationship between the dimensionless Reynolds and Best numbers, fall speed and mass can be derived from each other if particle size and cross-sectional area are also known. In this work, ground-based in-situ measurements of snow particle microphysical properties are used to analyse mass as a function of shape and the other properties particle size, cross-sectional area, and fall speed. The measurements for this study were done in Kiruna, Sweden during snowfall seasons of 2014 to 2019 and using the ground-based in-situ instrument Dual Ice Crystal Imager (D-ICI), which takes high-resolution side- and top-view images of natural hydrometeors. From these images, particle size (maximum dimension), cross-sectional area, and fall speed of individual particles are determined. The particles are shape classified according to the scheme presented in our previous work, in which particles sort into 15 different shape groups depending on their shape and morphology. Particle masses of individual ice particles are estimated from measured particle size, cross-sectional area, and fall speed. The selected dataset covers sizes from about 0.1 mm to 3.2 mm, fall speeds from 0.1 m s−1 to 1.6 m s−1, and masses from close to 0.2 μg to 320 μg. In our previous work, the fall speed relationships between particle size and cross-sectional area were studied. In this work, the same dataset is used to determine the particle mass, and consequently, the mass relationships between particle size, cross-sectional area, and fall speed are studied for these 15 shape groups. Furthermore, the mass relationships presented in this study are compared with the previous studies.


Cellulose ◽  
2019 ◽  
Vol 26 (8) ◽  
pp. 4693-4706 ◽  
Author(s):  
Hangbo Yue ◽  
Juan C. Rubalcaba ◽  
Yingde Cui ◽  
Juan P. Fernández-Blázquez ◽  
Chufen Yang ◽  
...  

1994 ◽  
Vol 77 (6) ◽  
pp. 2899-2906 ◽  
Author(s):  
P. Navalesi ◽  
P. Hernandez ◽  
D. Laporta ◽  
J. S. Landry ◽  
F. Maltais ◽  
...  

In situ measurement of distal tracheal pressure (Ptr) via an intraluminal side-hole catheter (IC) has been used to determine endotracheal tube (Rett) and intrinsic patient (Rpt) resistances in intubated subjects. Because of differences in cross-sectional area between the endotracheal tube (ETT) and trachea, fluid dynamic principles predict that IC position should critically influence these results. Accordingly, the aim of this study was to determine the effect of IC position on Rett. Ptr was recorded in vitro through an IC from 2 cm inside, at the tip of, or 2 cm outside an ETT (7, 8, and 9 mm ID) situated within an artificial trachea (13, 18, and 22 mm ID). A reference value of Rett was also obtained. Results were unaffected by IC position during inspiration, overestimating Rett by 7.9 +/- 0.7% (SE). In contrast, during expiration, Rett fell as IC position changed from outside to inside the ETT and was underestimated by 41.3 +/- 3.6% with Ptr recorded inside the ETT. Varying ETT or tracheal size had little effect on the relative error in Rett. The IC itself did increase Rett due to a reduction in effective cross-sectional area, the change varying directly with IC size and inversely with ETT caliber. In vivo values in 11 intubated patients were comparable to in vitro results. In summary, IC position and size can have important consequences on in situ measurements of Ptr and should be considered when clinically monitoring Rett or Rpt.


2003 ◽  
Vol 285 (2) ◽  
pp. H653-H660 ◽  
Author(s):  
Leila H. Hamza ◽  
Quang Dang ◽  
Xiao Lu ◽  
Ayesha Mian ◽  
Sabee Molloi ◽  
...  

The objective of this study was to determine the effect of passive myocardium on the coronary arteries under distension and compression. To simulate distension and compression, we placed a diastolic-arrested heart in a Lucite box, where both the intravascular pressure and external (box) pressure were varied independently and expressed as a pressure difference (ΔP = intravascular pressure – box pressure). The ΔP-cross-sectional area relationship of the first several generations of porcine coronary arteries and the ΔP-volume relationship of the coronary arterial tree (vessels >0.5 mm in diameter) were determined using a video densitometric technique in the range of +150 to –150 mmHg. The vasodilated left anterior descending (LAD) coronary artery of six KCl-arrested hearts were perfused with iodine and 3% Cab-O-Sil. The intravascular pressure was varied in a triangular pattern, whereas the absolute cross-sectional area of each vessel and the total arterial volume were calculated using video densitometry under different box pressures (0, 50, 100, and 150 mmHg). In the range of positive ΔP, we found that the compliance of the proximal LAD artery in situ (4.85 ± 3.8 × 10–3 mm2/mmHg) is smaller than that of the same artery in vitro (16.5 ± 6 × 10–3 mm2/mmHg; P = 0.009). Hence, the myocardium restricts the compliance of the epicardial artery under distension. In the negative ΔP range, the LAD artery does not collapse, whereas the same vessel readily collapses when tested in vitro. Hence, we conclude that myocardial tethering prevents collapse of large blood vessel under compression.


1988 ◽  
Vol 110 (2) ◽  
pp. 104-109 ◽  
Author(s):  
N. G. Shrive ◽  
T. C. Lam ◽  
E. Damson ◽  
C. B. Frank

There appears to be no generally accepted method of measuring in-situ the cross-sectional area of connective tissues, particularly small ones, before mechanical testing. An instrument has therefore been devised to measure the cross-sectional area of one such tissue, the rabbit medial collateral ligament, directly and nondestructively. However, the methodology is general and could be applied to other tissues with appropriate changes in detail. The concept employed in the instrument is to measure the thickness of the tissue as a function of position along the width of the tissue. The plot obtained of thickness versus width position is integrated to provide the cross-sectional area. This area is accurate to within 5 percent, depending mainly on alignment of the instrument and pre-load of the ligament. Results on the mid-substance of the rabbit medial collateral ligaments are repeatable and reproducible. Values of maximum width and thickness are less variable than those obtained with a vernier caliper. The measured area is considerably less than that estimated assuming rectangular cross-section and slightly less than that estimated on the assumption of elliptical cross-section.


1995 ◽  
Vol 19 (1) ◽  
pp. 145-152 ◽  
Author(s):  
Susan A. Wood ◽  
John D. Hoford ◽  
Eric A. Hoffman ◽  
Elias Zerhouni ◽  
Wayne Mitzner

2021 ◽  
Vol 21 (10) ◽  
pp. 7545-7565
Author(s):  
Sandra Vázquez-Martín ◽  
Thomas Kuhn ◽  
Salomon Eliasson

Abstract. Improved snowfall predictions require accurate knowledge of the properties of ice crystals and snow particles, such as their size, cross-sectional area, shape, and fall speed. The fall speed of ice particles is a critical parameter for the representation of ice clouds and snow in atmospheric numerical models, as it determines the rate of removal of ice from the modelled clouds. Fall speed is also required for snowfall predictions alongside other properties such as ice particle size, cross-sectional area, and shape. For example, shape is important as it strongly influences the scattering properties of these ice particles and thus their response to remote sensing techniques. This work analyzes fall speed as a function of particle size (maximum dimension), cross-sectional area, and shape using ground-based in situ measurements. The measurements for this study were done in Kiruna, Sweden, during the snowfall seasons of 2014 to 2019, using the ground-based in situ instrument Dual Ice Crystal Imager (D-ICI). The resulting data consist of high-resolution images of falling hydrometeors from two viewing geometries that are used to determine particle size (maximum dimension), cross-sectional area, area ratio, orientation, and the fall speed of individual particles. The selected dataset covers sizes from about 0.06 to 3.2 mm and fall speeds from 0.06 to 1.6 m s−1. Relationships between particle size, cross-sectional area, and fall speed are studied for different shapes. The data show in general low correlations to fitted fall speed relationships due to large spread observed in fall speed. After binning the data according to size or cross-sectional area, correlations improve, and we can report reliable parameterizations of fall speed vs. particle size or cross-sectional area for part of the shapes. For most of these shapes, the fall speed is better correlated with cross-sectional area than with particle size. The effects of orientation and area ratio on the fall speed are also studied, and measurements show that vertically oriented particles fall faster on average. However, most particles for which orientation can be defined fall horizontally.


Sign in / Sign up

Export Citation Format

Share Document