Mechanical stimulation induces pp125FAK and pp60 src activity in an in vivo model of trabecular bone formation

2001 ◽  
Vol 91 (2) ◽  
pp. 912-918 ◽  
Author(s):  
Maria R. Moalli ◽  
Suquing Wang ◽  
Nancy J. Caldwell ◽  
Pravin V. Patil ◽  
Craig R. Maynard

Utilizing an in vivo model of trabecular bone formation, we demonstrated the temporal and spatial activation of pp125FAK in response to specific mechanical load stimuli. Bone chambers equipped with hydraulic actuators were aseptically inserted into each proximal tibial metaphysis of adult, male dogs under general anesthesia. The load stimulus consisted of a trapezoidal waveform, with a maximum compressive load of 17.8 N, loading rate of 89 N/s, at 1 Hz frequency. One chamber was loaded for 2 (120 cycles), 15 (900 cycles), or 30 min (1,800 cycles), whereas the contralateral chamber served as unloaded control. Bone chambers were biopsied at postload time points of 0, 15, and 45 min. Load-induced activation of FAK was rapid, and the duration of activation was dependent on the number of applied load cycles. Mechanical stimulation increased the association of FAK with Src and the time course of complex formation paralleled the temporal activation of FAK. Evaluation of cryosections revealed prominent FAK immunoreactivity among marrow fibroblasts and stromal cells.

1999 ◽  
Author(s):  
Mark J. Eichler ◽  
Chi Hyun Kim ◽  
X. Edward Guo

Abstract The role of mechanical loading in trabecular bone adaptation is important for the understanding of bone integrity in different loading scenarios such as microgravity and for the etiology of age-related bone fractures. There have been numerous in vivo animal studies of bone adaptation, most of which are related to cortical bone remodeling, aimed at the investigation of Wolff’s Law [4], An interesting experimental model for trabecular bone adaptation has been developed in the rat tail vertebrae [2,3]. This model is attractive for trabecular bone adaptation studies because a controlled mechanical load can be applied to a whole vertebra with minimal surgical trauma, using a relatively inexpensive animal model. In addition, with advanced micro computed tomography (micro-CT) or micro magnetic resonance imaging (micro-MRI) coupled with large scale finite element modeling techniques, it is possible to characterize the three-dimensional (3D) stress/strain environment in the bone tissue close to a cellular level (∼25μm) [1]. Therefore, this in vivo rat tail model has a tremendous potential for quantification of the relationship between mechanical stimulation and biological response in trabecular bone adaptation.


1992 ◽  
Vol 263 (5) ◽  
pp. E920-E927 ◽  
Author(s):  
M. M. Donnelly ◽  
S. B. Hoath ◽  
W. F. Pickens

Daily administration of epidermal growth factor (EGF) to neonatal rodents elicits a classic morphogenetic syndrome. In this study, we examined the early (minutes to hours) consequences of EGF treatment in the neonatal rat (age 0–72 h). Significant findings included a rapid reduction in resting heart rate 4 h after EGF treatment accompanied by a sensitive dose- and age-dependent decrease in systemic oxygen consumption (VO2). Midscapular skin temperature (MST) was measured as a putative noninvasive indicator of brown adipose tissue thermogenesis. As little as 10 ng EGF/g body wt elicited a significant reduction in MST. Both the decrease in VO2 evoked by EGF and the MST response were potentiated by environmental cold exposure. EGF treatment also resulted in rapid (90 min) reductions in circulating levels of glycerol, triglyceride, and cholesterol while increasing serum glucose and arachidonic acid. Other free fatty acids were unaffected. Serum lactate levels were increased by EGF with the same time course as the reduction in VO2. These results provide new biochemical data on the pharmacological actions of EGF and further characterize the EGF-treated neonatal rodent as an intriguing in vivo model of growth factor action.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 881-881 ◽  
Author(s):  
Michaela R Reagan ◽  
Archana Swami ◽  
Pamela A Basto ◽  
Yuji Mishima ◽  
Jinhe Liu ◽  
...  

Abstract Introduction The bone marrow (BM) niche is known to exert a protective effect on lymphoid tumors, such as multiple myeloma (MM), where mesenchymal stem cell interactions with clonal plasma cells increase tumor proliferation and survival. However, certain cells within the BM milieu, such as mature osteoblasts and osteocytes, have demonstrated the potential to inhibit tumor growth; utilizing these cells presents a promising new anti-cancer approach. Hence, designing better methods of bone-specific delivery for both direct cancer cell treatment and indirect treatment through the modulation of bone cells may result in a potent, two-pronged anti-cancer strategy. Our work aimed to develop a novel system to target both MM and bone cells to induce greater osteogenesis and hamper tumor growth. Methods PEG–PLGA nanoparticles (NPs) coupled to alendronate (“bone-targeted”) or alone (“non-targeted”) were formulated and loaded with bortezomib (“BTZ-NPs”) or left empty (“BTZ-free”). NPs were characterized for their physiochemical properties, including size (using dynamic light scattering; surface charges (Zeta potential); and bone affinity (using hydroxyapatite binding). NPs were engineered with different formulation methods and those with the optimal physiochemical characteristics and drug encapsulation efficiency were used for further studies. BTZ release kinetics were analyzed using HPLC. Anti-MM effects were assessed in vitro using MTT, bioluminescence (BLI) and Annexin V/PI apoptosis flow cytometry analysis on MM1S cells. In vivo, efficacy was measured by mouse weight, BLI and survival after i.v. cancer cell injections in mice. Cellular uptake was assessed in vitro by flow cytometry and in vivo biodistribution was assessed using fluorescent whole body and fixed section imaging. Bone specificity was assessed in vitro by co-culture of bone-targeted and non-targeted NPs with bone chips or hydroxyapatite using fluorescence and TEM imaging. In an in vivo model of myeloma treatment, female Nod/SCID beige mice were injected i.v. with 4 × 106 Luc+/GFP+ MM1S cells and, at day 21, treated with a) BTZ, b) BTZ-bone-targeted NPs, c) BTZ-non-targeted NPs or d) BTZ-free bone-targeted NPs. Using an in vivo model of pre-treatment for cancer prevention, mice were pre-treated with i.p. injections of BTZ-bone-targeted NPs and appropriate controls thrice weekly for 3 weeks. They were then injected i.v. with Luc+/GFP+ 5TGM1 or MM1S cells and monitored for BLI and survival. Static and dynamic bone histomorphometry and μCT were used to assess effects of pre-treatment on bone formation and osteolysis prevention. Results Our biodegradable, NPs had uniform size distribution within the range of 100 to 200 nm based on the type of formulation, with a zeta potential of ±5mV. Bone- targeted NPs showed high affinity towards bone mineral in vitro and better skeletal accumulation in vivo compared to non-targeted NPs. NPs were easily up-taken by cells in vitro, and BTZ release kinetics showed a burst followed by a sustained-release pattern over 60 hrs. BTZ-NPs induced apoptosis in MM cells in vitro. Importantly, BTZ-bone-targeted-NP pre-treated mice showed significantly less tumor burden (BLI) and longer survival than free drug or drug-free bone-targeted NPs, thus demonstrating a tumor-inhibiting effect unique to the BTZ-bone-targeted-NPs. Pre-treatment with BTZ increased bone formation in tibias and femurs, as measured by μCT of bone volume/total volume, and trabecular thickness and number, suggesting that increased bone volume may inhibit MM. In a second mouse model, both BTZ-bone-targeted NPs and BTZ-free NPs were equally able to reduce tumor growth in vivo when given after tumor formation. Conclusion Bone-targeted nanoparticles hold great potential for clinical applications in delivering chemotherapies to bone marrow niches, reducing off-target effects, increasing local drug concentrations, and lengthening the therapeutic window. BTZ-bone-targeted NPs are able to slow tumor growth and increase survival in mice when used as a pre-treatment. This may result, at least in part, from BTZ-induced increased bone formation. These findings indicate that BTZ-bone-targeted NPs exert a chemopreventive effect in MM in vivo, thus suggesting their potential use in the clinical setting. Disclosures: Basto: BIND Therapeutics: Patent licensed by BIND, Patent licensed by BIND Patents & Royalties. Farokhzad:BIND Therapeutics: Employment, Equity Ownership; Selecta Biosciences: Employment, Equity Ownership. Ghobrial:Onyx: Membership on an entity’s Board of Directors or advisory committees; BMS: Membership on an entity’s Board of Directors or advisory committees; BMS: Research Funding; Sanofi: Research Funding; Novartis: Membership on an entity’s Board of Directors or advisory committees.


2001 ◽  
Vol 123 (6) ◽  
pp. 607-612 ◽  
Author(s):  
John T. Koontz ◽  
Guillaume T. Charras ◽  
Robert E. Guldberg

A finite element method to simulate the formation of an interconnected trabecular bone microstructure oriented with respect to applied in vivo mechanical forces is introduced and quantitatively compared to experimental data from a hydraulic bone chamber implant model. Randomly located 45 μm mineralized nodules were used as the initial condition for the model simulations to represent an early stage of intramembranous bone formation. Boundary conditions were applied consistent with the mechanical environment provided by the in vivo bone chamber model. A two-dimensional repair simulation algorithm that incorporated strain energy density (SED), SED gradient, principal strain, or principal strain gradient as the local objective criterion was utilized to simulate the formation of an oriented trabecular bone microstructure. The simulation solutions were convergent, unique, and relatively insensitive to the assumed initial distribution of mineralized nodules. Model predictions of trabecular bone morphology and anisotropy were quantitatively compared to experimental results. All simulations produced structures that qualitatively resembled oriented trabecular bone. However, only simulations utilizing a gradient objective criterion yielded results quantitatively similar to in vivo observations. This simulation approach coupled with an experimental model that delivers controlled in vivo mechanical stimuli can be utilized to study the relationship between physical factors and microstructural adaptation during bone repair.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1488
Author(s):  
Colleen McCarthy ◽  
Gulden Camci-Unal

As explained by Wolff’s law and the mechanostat hypothesis, mechanical stimulation can be used to promote bone formation. Low intensity pulsed ultrasound (LIPUS) is a source of mechanical stimulation that can activate the integrin/phosphatidylinositol 3-OH kinase/Akt pathway and upregulate osteogenic proteins through the production of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). This paper analyzes the results of in vitro and in vivo studies that have evaluated the effects of LIPUS on cell behavior within three-dimensional (3D) titanium, ceramic, and hydrogel scaffolds. We focus specifically on cell morphology and attachment, cell proliferation and viability, osteogenic differentiation, mineralization, bone volume, and osseointegration. As shown by upregulated levels of alkaline phosphatase and osteocalcin, increased mineral deposition, improved cell ingrowth, greater scaffold pore occupancy by bone tissue, and superior vascularization, LIPUS generally has a positive effect and promotes bone formation within engineered scaffolds. Additionally, LIPUS can have synergistic effects by producing the piezoelectric effect and enhancing the benefits of 3D hydrogel encapsulation, growth factor delivery, and scaffold modification. Additional research should be conducted to optimize the ultrasound parameters and evaluate the effects of LIPUS with other types of scaffold materials and cell types.


2020 ◽  
Vol 287 (1926) ◽  
pp. 20200457 ◽  
Author(s):  
Stephanie M. Smith ◽  
Kenneth D. Angielczyk

Biological structures with extreme morphologies are puzzling because they often lack obvious functions and stymie comparisons to homologous or analogous features with more typical shapes. An example of such an extreme morphotype is the uniquely modified vertebral column of the hero shrew Scutisorex , which features numerous accessory intervertebral articulations and massively expanded transverse processes. The function of these vertebral structures is unknown, and it is difficult to meaningfully compare them to vertebrae from animals with known behavioural patterns and spinal adaptations. Here, we use trabecular bone architecture of vertebral centra and quantitative external vertebral morphology to elucidate the forces that may act on the spine of Scutisorex and that of another large shrew with unmodified vertebrae ( Crocidura goliath ). X-ray micro-computed tomography (µCT) scans of thoracolumbar columns show that Scutisorex thori is structurally intermediate between C. goliath and S. somereni internally and externally, and both Scutisorex species exhibit trabecular bone characteristics indicative of higher in vivo axial compressive loads than C. goliath. Under compressive load, Scutisorex vertebral morphology is adapted to largely restrict bending to the sagittal plane (flexion). Although these findings do not solve the mystery of how Scutisorex uses its byzantine spine in vivo , our work suggests potentially fruitful new avenues of investigation for learning more about the function of this perplexing structure.


2015 ◽  
Vol 137 (1) ◽  
Author(s):  
T. J. Vaughan ◽  
M. Voisin ◽  
G. L. Niebur ◽  
L. M. McNamara

Mechanical loading directs the differentiation of mesenchymal stem cells (MSCs) in vitro and it has been hypothesized that the mechanical environment plays a role in directing the cellular fate of MSCs in vivo. However, the complex multicellular composition of trabecular bone marrow means that the precise nature of mechanical stimulation that MSCs experience in their native environment is not fully understood. In this study, we developed a multiscale model that discretely represents the cellular constituents of trabecular bone marrow and applied this model to characterize mechanical stimulation of MCSs in vivo. We predicted that cell-level strains in certain locations of the trabecular marrow microenvironment were greater in magnitude (maximum ε12 = ∼24,000 με) than levels that have been found to result in osteogenic differentiation of MSCs in vitro (>8000 με), which may indicate that the native mechanical environment of MSCs could direct cellular fate in vivo. The results also showed that cell–cell adhesions could play an important role in mediating mechanical stimulation within the MSC population in vivo. The model was applied to investigate how changes that occur during osteoporosis affected mechanical stimulation in the cellular microenvironment of trabecular bone marrow. Specifically, a reduced bone volume (BV) resulted in an overall increase in bone deformation, leading to greater cell-level mechanical stimulation in trabecular bone marrow (maximum ε12 = ∼48,000 με). An increased marrow adipocyte content resulted in slightly lower levels of stimulation within the adjacent cell population due to a shielding effect caused by the more compliant behavior of adipocytes (maximum ε12 = ∼41,000 με). Despite this reduction, stimulation levels in trabecular bone marrow during osteoporosis remained much higher than those predicted to occur under healthy conditions. It was found that compensatory mechanobiological responses that occur during osteoporosis, such as increased trabecular stiffness and axial alignment of trabeculae, would be effective in returning MSC stimulation in trabecular marrow to normal levels. These results have provided novel insight into the mechanical stimulation of the trabecular marrow MSC population in both healthy and osteoporotic bone, and could inform the design three-dimensional (3D) in vitro bioreactor strategies techniques, which seek to emulate physiological conditions.


1989 ◽  
Vol 121 (3) ◽  
pp. 435-442 ◽  
Author(s):  
E. Martin Spencer ◽  
Erwin C. C. Si ◽  
Chung C. Liu ◽  
Guy A. Howard

Abstract. Insulin-like growth factor-I and parathyroid hormone are both known regulators of bone formation. In this study, human recombinant IGF-I and bovine PTH (1–34) and their combination were studied for their effects in vitro on the proliferation of embryonic chick osteoblast-like cells (osteoblasts) and in vivo on bone formation in normal rats. Osteoblasts from 17-day-old chick embryos were cultured in serum-free BGJb medium containing 0.1% bovine albumin. After 2 days, IGF-I and/or PTH were added. Twenty-four hours later [3H]thymidine incorporation into trichloroacetic acid precipitable material was quantified as an index of cell proliferation. This has previously been shown to reflect actual cell division. IGF-I at doses ranging from 0.85 to 13.6 nmol/l caused a dose-dependent increase in [3H]thymidine incorporation into osteoblasts. PTH alone (10 to 1000 pmol/l) had no significant effect. However, when combined with IGF-I, PTH potentiated the mitogenic effect of IGF-I and achieved statistical significance at 30 and 100 pmol/l (p <0.05). This potentiation was also studied in vivo. The right hindlimbs of rats weighing 150 g were infused intra-arterially by an osmotic minipump with graded doses of IGF-I (0.1 to 0.4 nmol/day) and/or PTH (0.27 nmol/day) for 7 days. The rate of trabecular bone apposition (formation) was measured by double tetracycline labelling and compared with the contralateral uninfused limb which acted as the control. Histomorphometric data revaled that neither IGF-I nor PTH alone had a significant effect on trabecular bone apposition rate compared with control limbs. The co-infusion of IGF-I (0.4 nmol/day) and PTH (0.27 nmol/day) resulted in a marked increase in trabecular bone apposition rate. The results of 2 studies were significant at p < 0.01. These data suggest that PTH potentiates the effect of IGF-I on bone formation both in vivo and in vitro.


Bone ◽  
2000 ◽  
Vol 27 (5) ◽  
pp. 627-634 ◽  
Author(s):  
B Baroukh ◽  
M Cherruau ◽  
C Dobigny ◽  
D Guez ◽  
J.L Saffar

Sign in / Sign up

Export Citation Format

Share Document