Nanoparticle Design For Bone-Specific Chemotherapy and Microenvironmental Targeting In Multiple Myeloma

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 881-881 ◽  
Author(s):  
Michaela R Reagan ◽  
Archana Swami ◽  
Pamela A Basto ◽  
Yuji Mishima ◽  
Jinhe Liu ◽  
...  

Abstract Introduction The bone marrow (BM) niche is known to exert a protective effect on lymphoid tumors, such as multiple myeloma (MM), where mesenchymal stem cell interactions with clonal plasma cells increase tumor proliferation and survival. However, certain cells within the BM milieu, such as mature osteoblasts and osteocytes, have demonstrated the potential to inhibit tumor growth; utilizing these cells presents a promising new anti-cancer approach. Hence, designing better methods of bone-specific delivery for both direct cancer cell treatment and indirect treatment through the modulation of bone cells may result in a potent, two-pronged anti-cancer strategy. Our work aimed to develop a novel system to target both MM and bone cells to induce greater osteogenesis and hamper tumor growth. Methods PEG–PLGA nanoparticles (NPs) coupled to alendronate (“bone-targeted”) or alone (“non-targeted”) were formulated and loaded with bortezomib (“BTZ-NPs”) or left empty (“BTZ-free”). NPs were characterized for their physiochemical properties, including size (using dynamic light scattering; surface charges (Zeta potential); and bone affinity (using hydroxyapatite binding). NPs were engineered with different formulation methods and those with the optimal physiochemical characteristics and drug encapsulation efficiency were used for further studies. BTZ release kinetics were analyzed using HPLC. Anti-MM effects were assessed in vitro using MTT, bioluminescence (BLI) and Annexin V/PI apoptosis flow cytometry analysis on MM1S cells. In vivo, efficacy was measured by mouse weight, BLI and survival after i.v. cancer cell injections in mice. Cellular uptake was assessed in vitro by flow cytometry and in vivo biodistribution was assessed using fluorescent whole body and fixed section imaging. Bone specificity was assessed in vitro by co-culture of bone-targeted and non-targeted NPs with bone chips or hydroxyapatite using fluorescence and TEM imaging. In an in vivo model of myeloma treatment, female Nod/SCID beige mice were injected i.v. with 4 × 106 Luc+/GFP+ MM1S cells and, at day 21, treated with a) BTZ, b) BTZ-bone-targeted NPs, c) BTZ-non-targeted NPs or d) BTZ-free bone-targeted NPs. Using an in vivo model of pre-treatment for cancer prevention, mice were pre-treated with i.p. injections of BTZ-bone-targeted NPs and appropriate controls thrice weekly for 3 weeks. They were then injected i.v. with Luc+/GFP+ 5TGM1 or MM1S cells and monitored for BLI and survival. Static and dynamic bone histomorphometry and μCT were used to assess effects of pre-treatment on bone formation and osteolysis prevention. Results Our biodegradable, NPs had uniform size distribution within the range of 100 to 200 nm based on the type of formulation, with a zeta potential of ±5mV. Bone- targeted NPs showed high affinity towards bone mineral in vitro and better skeletal accumulation in vivo compared to non-targeted NPs. NPs were easily up-taken by cells in vitro, and BTZ release kinetics showed a burst followed by a sustained-release pattern over 60 hrs. BTZ-NPs induced apoptosis in MM cells in vitro. Importantly, BTZ-bone-targeted-NP pre-treated mice showed significantly less tumor burden (BLI) and longer survival than free drug or drug-free bone-targeted NPs, thus demonstrating a tumor-inhibiting effect unique to the BTZ-bone-targeted-NPs. Pre-treatment with BTZ increased bone formation in tibias and femurs, as measured by μCT of bone volume/total volume, and trabecular thickness and number, suggesting that increased bone volume may inhibit MM. In a second mouse model, both BTZ-bone-targeted NPs and BTZ-free NPs were equally able to reduce tumor growth in vivo when given after tumor formation. Conclusion Bone-targeted nanoparticles hold great potential for clinical applications in delivering chemotherapies to bone marrow niches, reducing off-target effects, increasing local drug concentrations, and lengthening the therapeutic window. BTZ-bone-targeted NPs are able to slow tumor growth and increase survival in mice when used as a pre-treatment. This may result, at least in part, from BTZ-induced increased bone formation. These findings indicate that BTZ-bone-targeted NPs exert a chemopreventive effect in MM in vivo, thus suggesting their potential use in the clinical setting. Disclosures: Basto: BIND Therapeutics: Patent licensed by BIND, Patent licensed by BIND Patents & Royalties. Farokhzad:BIND Therapeutics: Employment, Equity Ownership; Selecta Biosciences: Employment, Equity Ownership. Ghobrial:Onyx: Membership on an entity’s Board of Directors or advisory committees; BMS: Membership on an entity’s Board of Directors or advisory committees; BMS: Research Funding; Sanofi: Research Funding; Novartis: Membership on an entity’s Board of Directors or advisory committees.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1892-1892
Author(s):  
Cesarina Giallongo ◽  
Daniele Tibullo ◽  
Nunziatina Laura Parrinello ◽  
Giuseppina Camiolo ◽  
Piera La Cava ◽  
...  

Abstract Introduction We have already demonstrated that myeloma mesenchymal stromal cells (MM-MSC) promote cancer immune evasion through the activation of myeloid derived suppressor cells and we hypothesized that MM-MSC could be polarized stromal cells to better 'serve' cancer (Giallongo et al, Oncotarget 2016). Since it has been demonstrated that specific Toll-like receptors (TLR) can drive MSC activation status, including two distinct phenotypes defined MSC1 (TLR4-dependent) or MSC2 (TLR3-dependent), we evaluated the effect of TLR activation on MM-MSC Methods Healthy Peripheral blood mononucleated cells (PBMC) were cultured with MSC for 6 days; then neutrophils were isolated using magnetic microbeads and their immunosuppressive activity was evaluated by their ability to suppress activation of CFSE+ T cells. Immunocompetent adult Zebrafish was used as in vivo model for myeloma cells engraftment. Tumor xenograft was measured by tomography 6 days post-injection. Results Using specific agonists for TLR4 (LPS) or TLR3 (poly(I:C)) for 24 h, we observed that healthy MSC acquired the same immunological alteration of MM-MSC after a pre-treatment with LPS. Indeed, MSC1 polarization of HC-MSC induced neutrophils to become immunosuppressive. Moreover, wester blotting analysis confirmed the activation of TLR4/MyD88 pathway in MM-MSC but not in healthy control-MSC (HC-MSC). To investigate if the polarization status of MM-MSC could promote tumor-growth in vivo, a mixtures of fluorescently labeled MM cells plus HC- or MM-MSC were implanted in zebrafish. After six days, the animals co-injected with plasma cells (PC) and MM-MSC showed enhanced tumor colonization and growth (calculated as tumor area) compared with zebrafish injected with PC and HC-MSC (control) (p<0.05). Flow cytometry detection of hCD138+ cells confirmed less MM cells in zebrafish injected with PC and HC-MSC (p=0.001). Therefore, we analyzed the expression of the master regulator transcription factors for Th1/Th2 (tbx21 and gata3) and Th1- and Th2-type cytokines to better assess in vivo the involvement of the immune escape mechanisms promoted by co-injection of PC with MM-MSC. As compared to control animals, gata3, IL-4 and IL-13 were significantly up-regulated in zebrafish injected with PC plus MM-MSC, revealing a Th2 responce. Next, we used TAK-242, a blocker of signaling transduction mediated by the intracellular domain of TLR4, to inhibit its signaling in MM-MSC before injection in zebrafish. Animals co-injected with PC and MM-MSC pre-treated with TAK-242 showed a reduction of 41% of tumor area compared to zebrafish injected with PC and MM-MSC (p<0.001). Moreover, the same animals showed the up-regulation of tbx21 and INFγ (Th1 response). To examine if PC play a role in MSC polarization, before performing co-cultures with PBMC, we pre-treated HC-MSC with MM cell lines (U266, H929, MM1S). PC pre-treatment drove healthy MSC to activate neutrophils in immunosuppressive cells in vitro. Therefore, we investigated if PC activated TLR4 pathway in healthy MSC and found that PC induced nuclear translocation of NFkB and subsequently of IRF3 in HC-MSC, indicating the involvement of TLR4-MyD88-dependent and independent pathways in MSC commitment. Injecting zebrafish with MM cells and HC-MSC co-cultured or not for 24h with PC, we observed that animals injected with HC-MSC pre-treated with PC showed more tumor engraftment (p=0.001) and 15±2,8% more hCD138 (p=0.001). Inhibition of TLR4 signaling during co-culture in vitro of HC-MSC with MM cells led to a reduction of tumor growth (p=0.001) and hCD138 infiltrate (from 17,9±7% to 2,8±1,2%; p=0.0006). Conclusion: TLR4 signaling plays a key role in MSC transformation by inducing a pro-tumor phenotype associated with a permissive microenvironment that circumvents the immune response and allows a better tumor engraftment. Disclosures Palumbo: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Di Raimondo:Takeda: Honoraria, Research Funding; Celgene: Honoraria.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1206-1206
Author(s):  
Ryan T Bishop ◽  
Tao Li ◽  
Raghunandan R Alugubelli ◽  
Oliver Hampton ◽  
Ariosto Siqueira Silva ◽  
...  

Abstract INTRODUCTION: Despite proteasome inhibitors (PIs) improving multiple MM (MM) outcomes, patients often become resistant. Identifying mechanisms of resistance with translational potential are an urgent unmet clinical need. Preliminary studies from our group have identified that the therapeutically targetable acid ceramidase, ASAH1, is a key mediator of PI resistance and its presence in extracellular vesicles (EVs) derived from resistant MM cells, confers PI resistance on drug naïve MM cells. METHODS: Nanosight technology, transmission electron microscopy and immunoblot were used to define EVs. Viability and apoptosis assays were used to determine the effects of EVs and inhibitors on resistance acquisition/sensitization to PIs. LC-MS was used to interrogate EV cargo contents. Clinical relevance of ASAH1 was determined in multiple human data cohorts (M2GEN and MMRF CoMMpass). Genetic (shRNA) and pharmacological (ceranib-2) approaches were used to assess the role of ASAH1 mechanistically in vitro and in vivo using multiple isogenic naïve and PI resistant cell lines, patient derived CD138+ MM cells and NSG mouse models. RESULTS: Co-culture of sensitive MM cells with resistant MM-EVs alone significantly protected against PI cytotoxicity. Proteomic profiling revealed high levels of ASAH1 in EVs derived from PI resistant MM cells. Further, we observed ASAH1 is abundant in lysates of multiple PI resistant cell lines compared to their isogenic drug sensitive counterparts. In human datasets, high ASAH1 expression was noted in PI resistant MM patients compared to those newly diagnosed and correlated with significantly shorter survival times. Mechanistically, knockdown of ASAH1 led to reduced conversion of ceramide to sphingosine 1-phosphate (S1-P) and decreased expression/activity of the anti-apoptotic proteins MCL-1, BCL2 and BCL-xL and increases in pro-apoptotic BIM and NOXA. Notably, ASAH1 knockdown also significantly sensitized the cells to PI treatment and this effect was rescued by addition of exogenous S1-P. Pharmacological inhibition of ASAH1 with ceranib-2 also sensitized resistant cells to PI treatment and prevented EV mediated resistance transfer in vitro. This was recapitulated ex vivo with human clinical samples. Our orthotopic in vivo model using PI-resistant U266-PSR cells show that ceranib-2 is highly effective in limiting the growth of PI-resistant disease, protecting against MM induced bone disease, and increasing overall survival compared to both bortezomib and vehicle controls. CONCLUSION: We define the ceramidase ASAH1 as a novel, druggable target for the treatment of PI resistant MM. Disclosures Hampton: M2Gen: Current Employment. Siqueira Silva: AbbVie Inc.: Research Funding; Karyopharm Therapeutics Inc.: Research Funding. Shain: Janssen oncology: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Sanofi Genzyme: Consultancy, Speakers Bureau; Karyopharm Therapeutics Inc.: Honoraria, Research Funding; Novartis Pharmaceuticals Corporation: Consultancy; GlaxoSmithLine, LLC: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; BMS: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Amgen Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Adaptive Biotechnologies Corporation: Consultancy, Speakers Bureau; AbbVie: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 881-881
Author(s):  
Sunisa Kongkiatkamon ◽  
Anand Tiwari ◽  
Vera Adema ◽  
Cassandra M Kerr ◽  
Bartlomiej Przychodzen ◽  
...  

Myelodysplastic syndromes (MDS) ultimately will progress to a higher-risk form or acute myeloid leukemia. This evolution is accompanied by acquisition of genetic hits following ancestral mutations, with further subclonal diversification of the clonal architecture. Conceptually, therapeutic approaches targeting ancestral hits have the potential to eradicate MDS at early stages of ontogenesis. Founder SF3B1 mutations are frequent in MDS and therefore represent rational targets for drug development. During our drug discovery efforts we identified an existing drug that selectively inhibits the growth of SF3B1 mutant (SF3B1MT) cells. We consequently examined the effects of known compounds possibly arresting clonal expansion of SF3B1MT MDS cells. For our studies, we generated CRISPR/Cas9 knock-in human cells stably expressing the recurrent SF3B1 K700E mutation and a chromophore-tagged reporter (mRFP). Because of the high frequency of SF3B1 mutations and their effects on the splicing of a multitude of genes, we hypothesized that some of the corresponding downstream effects could be effectively targeted. Using luminescent cell viability assays and flow cytometry analysis, we screened a 3,000 compound library for selective sensitivity against isogenic SF3B1MT cells. A subset of this library contained 23 calcium2+ channel blockers (CCBs) of which one specific dihydropirimidine (DHP) showed the highest inhibitory activity against SF3B1MT cells. Several studies point towards a role of calcium signaling in MDS. Proteins active in calcium metabolism (GPR68, calpain, calpastatin) are involved in modulating sensitivity to drugs used in MDS (e.g., lenalidomide). Divalent substrates including Fe2+ may use CCs and it's plausible that our DHP can inhibit iron overload by blocking Fe2+ trafficking through L-type CCs. In this regard, CCBs have been shown to stimulate the activity of adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporters. Furthermore, it is known that the SF3B1 mutations reduce the expression of the iron transporter ABCB7, leading to increased iron accumulation. All of this led us to further evaluate the effects of DHP in vitro and in vivo. DHP had higher growth inhibitory activity against SF3B1MT cells when tested in vitro using 8 serial concentrations in half-log dilutions for a period of 3 days (20% and 60% growth inhibition at 1 and 3μM). Mixed competitive experiment of K700EmRFP and WTGFP cells treated with increased doses of DHP (1, 3, 5, 10, 20, 50 μM) reduced the competitiveness of K700EmRFP over the time inducing a 3-fold reduction at 50μM. K700EmRFP cells expressed half the amount of ABCB7 mRNA compared to WTGFP cells by RT-PCR. Therapeutic index provided by DHP was determined in vivo. Bone marrow cells of B6. Gt(ROSA)26Sortm1Sor/J (CD45.2) donors were transplanted in pre-lethally irradiated B6.SJL-PtprcaPepcb/BoyJ (CD45.1) recipients. Two weeks after transplantation, average engraftment (measured as percentage of CD45.2(+) donor cells) was 96% ± 0.02. DHP (10 mg/Kg) was orally administered. No decrease in the proportion of CD45.2(+) donor cells was seen post-treatment compared to pre-treatment (96±0.01 % vs. 96%±0.009). Similarly no change in the proportion of CD45.2(+) donor cells was observed in competitive repopulation experiments when B6. Gt(ROSA)26Sortm1Sor/J cells were mixed 1:1 with transgenic Sf3b1+/K700E cells (40%±0.13 vs. 44%±0.02). In contrast, preliminary experiments showed that DHP had an effect on reducing Sf3b1+/K700E allele burden in two chimeric mice (to 21% and 24%) compared to pre-treatment. DHP is structurally unique in comparison to other DHP-based CCBs; in that it possess a -CH20-CH2CH2NH2 moiety linked directly to the DHP scaffold that may in itself provide opportunities or modes for Fe2+ chelation as well as its L-type CCB activity. Our observations and structural analyses therefore provide impetus to explore this feature to possibly improve the drug's efficacy. In sum, we have demonstrated that the clonal growth of cells carrying SF3B1 mutations might be suppressed using the known L-type CCB DHP. This might represent a novel modulator of ATPase activity of ABC transporters in SF3B1MT expressing low ABCB7 levels. Disclosures Sekeres: Syros: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees. Maciejewski:Alexion: Consultancy; Novartis: Consultancy.


2021 ◽  
Vol 14 (4) ◽  
pp. 289
Author(s):  
Sana Ansari ◽  
Bregje W. M. de de Wildt ◽  
Michelle A. M. Vis ◽  
Carolina E. de de Korte ◽  
Keita Ito ◽  
...  

Bone is a complex organ maintained by three main cell types: osteoblasts, osteoclasts, and osteocytes. During bone formation, osteoblasts deposit a mineralized organic matrix. Evidence shows that bone cells release extracellular vesicles (EVs): nano-sized bilayer vesicles, which are involved in intercellular communication by delivering their cargoes through protein–ligand interactions or fusion to the plasma membrane of the recipient cell. Osteoblasts shed a subset of EVs known as matrix vesicles (MtVs), which contain phosphatases, calcium, and inorganic phosphate. These vesicles are believed to have a major role in matrix mineralization, and they feature bone-targeting and osteo-inductive properties. Understanding their contribution in bone formation and mineralization could help to target bone pathologies or bone regeneration using novel approaches such as stimulating MtV secretion in vivo, or the administration of in vitro or biomimetically produced MtVs. This review attempts to discuss the role of MtVs in biomineralization and their potential application for bone pathologies and bone regeneration.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2095-2095
Author(s):  
Zezhou Wang ◽  
Jaehyun Choi ◽  
Peter Dove ◽  
Chunlei Wang ◽  
Aaron D. Schimmer ◽  
...  

Abstract Although recent advances in the development of multiple myeloma (MM) therapies such as proteasome inhibitors and immunomodulatory agents have improved patient outcomes, MM remains incurable. Additional therapeutic agents with high efficacy, low toxicity and the convenience of oral administration are in high demand. BET inhibitors, such as JQ-1, have been considered as potential therapeutic agents for MM. In the present study, we report that TTI-281, an orally bioavailable BET inhibitor, displays anti-MM activity with a low toxicity profile in preclinical studies. First, TTI-281 was tested for binding and anti-tumor activity in vitro. BROMOscan and AlphaScreen assays demonstrated that TTI-281 bound to bromodomains of BRD2/BRD3/BRD4 with Kd values less than 10 nM. In MTS assays, TTI-281 inhibited the growth of MM cell lines (MM.1s, NCIH929, and RPMI-8826) with cell growth-inhibition (IC50) values less than 300 nM. Next, in vitro ADME screening and in vivo PK studies were conducted. Permeability assays using murine gastrointestinal epithelial cells indicated that TTI-281 had good permeability with little efflux liability (efflux ratio <1), suggesting favorable properties for oral absorption. Indeed, TTI-281 displayed excellent oral bioavailability in both mice and rats (93.1% and 91.8%, respectively). In addition, TTI-281 did not interfere with the metabolism of representative CYP isozyme substrates at concentrations up to 50 μM in pooled human liver microsomes. Data also suggested minimal potential for drug-drug interactions, allowing for the possible combination with first-line therapy to improve therapeutic and survival outcomes. Finally, TTI-281 was tested for anti-myeloma efficacy and tolerability in vivo. NOD-SCID mice (n=10/group) subcutaneously engrafted with the human myeloma cell line MM.1S were treated orally once daily for 21 days with different doses of TTI-281, vehicle control or the benchmark drug carfilzomib. TTI-281 reduced tumor growth in a dose-dependent manner in this MM xenograft model. At 30 mg/kg/day, TTI-281 led to a statistically significant decrease in tumor growth compared with the vehicle control and carfilzomib (reduced tumor volume: 67% after TTI-281 treatment vs 33% after carfilzomib treatment, p<0.0003). Furthermore, TTI-281 treatment was well tolerated, with no effect on body weight or other obvious toxicity. In summary, our preclinical data suggest that the orally available BET inhibitor TTI-281 has an excellent efficacy and safety profile, highlighting its potential as a promising drug candidate for myeloma therapy. Disclosures Wang: Trillium Therapeutics: Employment, Patents & Royalties. Choi:Trillium Therapeutics: Employment. Dove:Trillium Therapeutics: Employment, Patents & Royalties. Wang:Trillium Therapeutics: Employment. Schimmer:Novartis: Honoraria. Petrova:Trillium Therapeutics Inc: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Uger:Trillium Therapeutics: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties. Slassi:Trillium Therapeutics: Employment, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1841-1841
Author(s):  
Dharminder Chauhan ◽  
Ajita V. Singh ◽  
Arghya Ray ◽  
Teru Hideshima ◽  
Paul G. Richardson ◽  
...  

Abstract Abstract 1841 Introduction: The dimeric Nuclear Factor-kappa B (NF-κB) transcription factor plays a key role during multiple myeloma (MM) cell adhesion-induced cytokine secretion in bone marrow stromal cells, which in turn triggers MM cell growth in a paracrine manner. NF-κB signaling pathway is mediated via canonical (IKK-α/IKK-β/NEMO-P50/65 or NF-κB1) and non-canonical (IKK-α/IKK-α/NIK-p52/RelB or NF-κB2) components. Prior studies have also linked constitutive activation of non-canonical NF-κB pathway to genetic abnormalities/mutation, allowing for an autocrine growth of MM cells. Other recent studies showed that constitutive NF-κB activity in tumor cells from MM patients renders these cells refractory to inhibition by bortezomib; and in fact, that bortezomib induces canonical NF-κB activity. These reports provided the impetus for the development of an agent with ability to modulate canonical and/or non-canonical NF-κB axis, allowing for a more robust and specific inhibition of NF-κB. Recent research and development efforts at Nereus Pharmaceuticals, Inc., have identified a novel small molecule acanthoic acid analog NPI-1342 as a potent NF-κB inhibitor. Here, we examined the effects of NPI-1342 on canonical versus non-canonical NF-κB signaling pathways, as well as its anti-tumor activity against MM cells using both in vitro and in vivo model systems. Methods: We utilized MM.1S, MM.1R, RPMI-8226, U266, KMS12PE, NCI-H929, OCI-MY5, LR5, Dox-40, OPM1, and OPM2 human MM cell lines, as well as purified tumor cells from patients with MM. Cell viability assays were performed using MTT and Trypan blue exclusion assays. Signal transduction pathways were evaluated using immunoblot analysis, ELISA, and enzymology assays. Animal model studies were performed using the SCID-hu model, which recapitulates the human BM milieu in vivo. Results: We first examined the effects of NPI-1342 on lipopolysaccharides (LPS)-induced NF-κB activity. Results showed that NPI-1342 inhibits LPS-stimulated NF-κB activity in vitro, as measured by phosphorylation of IkBa. To determine whether NPI-1342 triggers a differential inhibitory effect on IKKβ versus IKKα, MM.1S MM cells were treated with NPI-1342 for 48 hours, and protein lysates were subjected to kinase activity assays. NPI-1342 blocked IKKα, but not IKKβ or IKKγ phosphorylation. We next assessed whether the inhibitory effect of NPI-1342 on NF-κB activity is associated with cytotoxicity in MM cells. We utilized a panel of MM cell lines: at least five of these have mutations of TRAF3 (MM.1S, MM.1R, DOX40 and U266); one has no known NF-κB mutations (OPM2), and one has amplification of NF-κB1 (OCI-MY5). Treatment of MM cell lines and primary patient (CD138 positive) MM cells for 48 hours significantly decreased their viability (IC50 range 15–20 μM) (P < 0.001; n=3) without affecting the viability of normal peripheral blood mononuclear cells, suggesting selective anti-MM activity and a favorable therapeutic index for NPI-1342. NPI-1342-induced a marked increase in Annexin V+ and PI- apoptotic cell population (P < 0.001, n=3). Mechanistic studies showed that NPI-1342-triggered apoptosis in MM cells is associated with activation of caspase-8, caspase-9, caspase-3, and PARP cleavage. We next examined the in vivo effects of NPI-1342 in human MM xenograft models. For these studies, we utilized the SCID-hu MM model, which recapitulates the human BM milieu in vivo. In this model, MM cells are injected directly into human bone chips implanted subcutaneously in SCID mice, and MM cell growth is assessed by serial measurements of circulating levels of soluble human IL-6R in mouse serum. Treatment of tumor-bearing mice with NPI-1342 (20 mg/kg intraperitoneally, QD1-5 for 2 weeks), but not vehicle alone, significantly inhibits MM tumor growth in these mice (10 mice each group; P = 0.004). The doses of NPI-1342 were well tolerated by the mice, without significant weight loss. Finally, immunostaining of implanted human bone showed robust apoptosis and blockade of NF-κB in mice treated with NPI-1342 versus vehicle alone. Conclusions: We demonstrate the efficacy of a novel small molecule inhibitor of NF-κB NPI-1342 in MM using both in vitro and in vivo models. NPI-1342 blocks NF-κB activity with a preferential inhibitory activity against IKK-α component of NF-κB signaling. Our preclinical studies support evaluation of NPI-1342 as a potential MM therapy. Disclosures: Hideshima: Acetylon: Consultancy. Richardson:Millennium: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Palladino:Nereus Pharmaceuticals, Inc: Employment, Equity Ownership. Anderson:Celgene: Consultancy; Millennium: Consultancy; Onyx: Consultancy; Merck: Consultancy; Bristol Myers Squibb: Consultancy; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Acetylon:; Nereus Pharmaceuticals, Inc: Consultancy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2396-2396
Author(s):  
Yongwei Zheng ◽  
Alexander W Wang ◽  
Mei Yu ◽  
Anand Padmanabhan ◽  
Benjamin E Tourdot ◽  
...  

Abstract Heparin-induced thrombocytopenia (HIT) is an immune-mediated disorder that can cause fatal arterial or venous thrombosis/thromboembolism. Immune complexes consisting of heparin, platelet factor 4 (PF4) and PF4/heparin-reactive antibodies are central to the pathogenesis of HIT. However, heparin, a glycosoaminoglycan, and PF4 are normal body constituents and it is as yet unclear what triggers the initial induction of pathogenic antibodies. Here we described detection of B cells among peripheral blood mononuclear cells (PBMCs) from each of 9 healthy adults that produced PF4/heparin-specific IgM antibodies following in vitro stimulation with ubiquitous pro-inflammatory molecules containing unmethylated CpG dinucleotides derived from bacterial and viral DNA. PF4/heparin-specific IgM-generating B cells were present at a frequency of at least 0.03 to 1 per thousand B cells present in the PBMC population. Similarly, splenic B cells isolated from unmanipulated wild-type mice consistently produced PF4/heparin-reactive antibodies following in vitro stimulation with CpG. In addition, wild-type mice produced PF4/heparin-reactive antibodies upon in vivo challenge with CpG whereas unchallenged wild-type mice did not. These findings demonstrate that both humans and mice possess pre-existing, inactive and tolerant PF4/heparin-specific B cells. We suggest that tolerance can be broken by a strong inflammatory stimulus, leading to activation of these B cells and production of antibodies that recognize PF4/heparin in vitro and in vivo. Consistent with this concept, mice lacking protein kinase Cd (PKCd), a signaling molecule of the B-cell survival factor BAFF (B-cell activation factor), that are known to have breakdown of B-cell tolerance to self-antigens, spontaneously produced anti-PF4/heparin antibodies in the absence of an inflammatory stimulus. Taken together, these findings demonstrate that breakdown of tolerance can lead to PF4/heparin-specific antibody production and that B-cell tolerance plays an important role in HIT pathogenesis. Disclosures: White II: Bayer: Membership on an entity’s Board of Directors or advisory committees; CSL-Behring: Membership on an entity’s Board of Directors or advisory committees; NIH: Membership on an entity’s Board of Directors or advisory committees; Asklepios: Membership on an entity’s Board of Directors or advisory committees; Wyeth: Membership on an entity’s Board of Directors or advisory committees; Entegrion: Membership on an entity’s Board of Directors or advisory committees; Biogen: Membership on an entity’s Board of Directors or advisory committees; Baxter: Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2583-2583
Author(s):  
Charles C. Chu ◽  
Piers E.M. Patten ◽  
Thomas MacCarthy ◽  
Xiao-Jie Yan ◽  
Jacqueline C. Barrientos ◽  
...  

Abstract Ultra-deep sequencing has revolutionized our ability to acquire large amounts of genetic data. We have applied this technology towards understanding the mutational process in B-cell chronic lymphocytic leukemia (CLL), which may be a key to understanding CLL pathogenesis. Acquisition of new cytogenetic aberrations and gene mutations in the CLL clone is associated with worse patient outcome. CLL is not unique in this aspect, as new somatic mutations and DNA rearrangements are also found during the evolution of other solid and liquid tumors. In many of these, activation-induced deaminase (AID), an enzyme normally expressed in germinal center B lymphocytes to induce IGHV-D-J mutations and isotype class switch recombination, is abnormally expressed. Its mutational activity, acting outside of the Ig loci, is implicated in the evolution to more aggressive disease. In CLL, the detection of leukemic cells expressing AID ex vivo correlates with significantly shorter patient survival. To test if AID mutational activity is functional in CLL cells and therefore could contribute to CLL evolution, we analyzed mutations in IGHV-D-J, the preferred substrate for AID. Because the rate of AID-induced mutation is low and only a small percentage of CLL cells express AID ex vivo, we used ultra-deep sequencing to analyze CLL cells that were activated under conditions that simulate the CLL microenvironment. Specifically, CLL cells were activated (1) in vitro by simulating the provision of T-cell help or (2) in vivo after adoptive transfer into alymphoid recipient mice, which requires the presence of T-cells for CLL cell growth. Each of these conditions induce AID in a large fraction of CLL cells. To analyze IGHV-D-J mutations, the specific CLL clone IGHV was amplified from cDNA obtained on day 0 or from the activated CLL samples using IGHV family-specific and IGHM primers to enable subsequent comparison of IGHV-D-J with IGHM mutation frequencies. Three unmutated IGHV CLL (U-CLL) and 3 mutated IGHV (>2% compared to germline) CLL (M-CLL) samples were sequenced with the Roche 454 FLX system, resulting in a total of 1,367,522 sequence reads. After using the Roche 454 algorithm to trim sequence reads, they were prepared using custom R scripts that separated 5’ IGHV and 5’ IGHM primer sequences, aligned sequences to the CLL clone IGHV-D-J rearrangement, and removed poor quality (<20) sequences, insertions, and deletions. Beginning at the 5’ end, the script also extracted blocks of sequences of the same length for day 0 and activated samples, which are required for subsequent analyses. After these preparations, the resulting 724,855 sequence blocks were subjected to clonal analyses with custom R scripts. The dominant CLL clone accounted for 94.5% (684,691) of the sequences. Subclone sequences occurring more than once were extracted. After comparison to day 0, new subclones could be identified in all samples after activation (3.22 – 28.70 new subclones / read bp *106). To evaluate AID mutational characteristics in new subclones, SHMTool (http://scb.aecom.yu.edu/shmtool) was employed to calculate mutation frequencies in IGHV-D-J relative to the IGHM constant region, at AID mutation hotspot sites (GYW or WRC), at AID mutation coldspot sites (SYC or GRS), at C/G base pairs, and at error-prone DNA polymerase eta repair hotspot sites (WA or TW). To calculate statistical significance, we utilized a custom R script that used a bootstrap method to account for the large sample sizes provided by ultra-deep sequencing as well as to correct for differences in sequencing sample size. All samples showed an increase in IGHV-D-J versus IGHM mutations after T cell activation. Five of 6 cases showed an increase in AID hostpot mutation frequency. AID coldspot mutation frequency decreased in 3/6 CLL cases. Percent transition mutation at C/G sites was higher than random in 2/6 CLL cases, which correlated with low frequencies of DNA polymerase eta hotspot mutation. In the other 4/6 CLL cases, the lower percent transitions at C/G sites may reflect the contribution of error-prone DNA repair. In summary, we developed a method to analyze ultra-deep IGHV-D-J sequences that revealed AID mutational characteristics in both U-CLL and M-CLL cells after activation with T-cell help in vitro or in vivo. These data are consistent with the hypothesis that AID, perhaps along with error-prone DNA repair, creates new mutations leading to the evolution of aggressive CLL. Disclosures: Rai: Sanofi: Membership on an entity’s Board of Directors or advisory committees; GSK: Membership on an entity’s Board of Directors or advisory committees; Teva: Membership on an entity’s Board of Directors or advisory committees; Genentech: Membership on an entity’s Board of Directors or advisory committees; Celgene: Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4712-4712 ◽  
Author(s):  
Deepika Sharma Das ◽  
Ze Tian ◽  
Arghya Ray ◽  
Durgadevi Ravillah ◽  
Yan Song ◽  
...  

Abstract Background and Rationale: Multiple Myeloma (MM) remains incurable despite the advent of novel drugs, highlighting the need for further identification of factors mediating disease progression and resistance. The bone marrow (BM) microenvironment confers growth, survival, and drug resistance in MM cells. Studies to date suggest an important role of BM hypoxia (low oxygenation) in MM cell survival, drug resistance, migration, and metastasis. Therapies targeting the MM cell in its BM milieu under hypoxic conditions may therefore achieve responses in patients resistant to various therapies. Recent studies led to the development of a novel aerospace-industry derived Phase 2 molecule RRx-001 with epigenetic and NO-donating properties. RRx-001 generates reactive oxygen and nitrogen species (RONS), which induces oxidative stress in tumor cells. Importantly, RRx-001 is also a potent vascular disrupting agent, which further provides rationale for utilizing RRx-001 as a therapeutic agent since tumor-associated angiogenesis is a characteristic of MM. A Phase I clinical trial has shown RRx-001 to have antitumor activity in heavily pretreated cancer patients and to be safe and well tolerated with no dose-limiting toxicities (Reid et al. J Clin Oncol 32:5s, 2014 suppl; abstr 2578). Here we examined the anti-MM activity of RRx-001 using in vitro and in vivo models of MM. Materials and methods: MM cell lines, patient MM cells, and peripheral blood mononuclear cells (PBMCs) from normal healthy donors were utilized to assess the anti-MM activity of RRx-001 alone or in combination with other agents. Drug sensitivity, cell viability, apoptosis, and migration assays were performed using WST, MTT, Annexin V staining, and transwell Inserts, respectively. Synergistic/additive anti-MM activity was assessed by isobologram analysisusing “CalcuSyn” software program. Signal transduction pathways were evaluated using immunoblotting. ROS release, nitric oxide generation, and mitochondrial membrane potential was measured as previously described (Chauhan et al., Blood, 2004, 104:2458). In vitro angiogenesis was assessed using matrigel capillary-like tube structure formation assays. DNMT1 activity was measured in protein lysates using EpiQuik DNMT1 assay kit. 5-methyl cytosine levels were analyzed in gDNA samples using methylflash methylated DNA quantification kit from Enzo life sciences; USA. For xenograft mouse model, CB-17 SCID-mice were subcutaneously inoculated with MM.1S cells as previously described (Chauhan et al., Blood, 2010, 115:834). Statistical significance of data was determined using a Student’st test. RRx-001 was obtained from RadioRx Inc., CA, USA; bortezomib, SAHA, and pomalidomide were purchased from Selleck chemicals, USA. Results: Treatment of MM cell lines (MM.1S, MM.1R, RPMI-8226, OPM2, H929, Dox-40 ARP-1, KMS-11, ANBL6.WT, ANBL6.BR, and LR5) and primary patient cells for 24h significantly decreased their viability (IC50 range 1.25nM to 2.5nM) (p < 0.001; n=3) without markedly affecting PBMCs from normal healthy donors, suggesting specific anti-MM activity and a favorable therapeutic index for RRx-001. Tumor cells from 3 of 5 patients were obtained from patients whose disease was progressing while on bortezomib, dexamethasone, and lenalidomide therapies. Moreover, RRx-001 inhibits proliferation of MM cells even in the presence of BM stromal cells. Mechanistic studies show that RRx-001-triggered apoptosis is associated with 1) induction of DNA damage response signaling via ATM/p53/gH2AX axis; 2) activation of caspases mediating both intrinsic and extrinsic apoptotic pathways; 3) increase in oxidative stress through release of ROS and generation of NO; and 4) decrease in DNA methyltransferase (DNMT1) enzymatic activity and global methylation levels. Furthermore, RRx-001 blocked migration of MM cells and angiogenesis. In vivo studies using subcutaneous human MM xenograft models show that RRx-001 is well tolerated and inhibits tumor growth. Finally, combining RRx-001 with bortezomib, SAHA, or pomalidomide induces synergistic anti-MM activity and overcomes drug resistance. Conclusion: Our preclinical studies showing efficacy of RRx-001 in MM disease models provide the framework for clinical trial of RRx-001, either alone or in combination, to improve outcome in relapsed and refractory MM patients. Disclosures Richardson: Oncopeptides AB: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees. Oronsky:RadioRx Inc, : Employment. Scicinski:RadioRx Inc,: Employment. Chauhan:Triphase Accelerator: Consultancy. Anderson:Celgene: Consultancy; Millenium: Consultancy; Onyx: Consultancy; Gilead: Consultancy; Sanofi Aventis: Consultancy; BMS: Consultancy; Oncopep/Acetylon: Equity Ownership.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3000-3000 ◽  
Author(s):  
Arghya Ray ◽  
Deepika Sharma DAS ◽  
Yan Song ◽  
Vincent Macri ◽  
Christopher L. Brooks ◽  
...  

Abstract Introduction Multiple myeloma (MM) remains incurable despite novel therapies, highlighting the need for further identification of factors mediating disease progression and resistance. Our studies have identified an integral role of bone marrow (BM) plasmacytoid dendritic cells (pDCs) in MM pathogenesis. The functional significance of increased numbers of pDCs in MM BM is evident from our observations that pDCs: are relatively resistant to novel and conventional therapies; protect tumor cells from therapy-induced cytotoxicity; promote tumor growth and survival; and suppress immune responses (Chauhan et al, Cancer Cell 2009, 16:309-323). Aberrant pDC function is evidenced in their interactions not only with MM cells, but also with other immune effector T cells and NK cells in the MM BM milieu (Ray et al, Leukemia 2015, 29:1441-1444). Directly targeting pDC interactions with MM and immune effector cells in the MM BM milieu will be required to enhance both anti-tumor immunity and cytotoxicity. However, therapies targeting pDCs are lacking. We found that IL-3R is highly expressed on pDCs, and that pDC-MM interactions trigger secretion of IL-3, which in turn, promotes both pDC survival and osteolytic bone disease. Recent efforts have led to the development of a novel therapeutic agent SL-401, which specifically targets IL-3R-expressing pDCs. Here we examined the effect of SL-401 on pDC-induced MM cell growth both in vitro and in vivo, as well as on IL-3R-expressing osteoclasts. Methods Patient MM cells, pDCs, and MNCs were obtained from normal donors or MM patients. Cell growth/viability was analyzed using MTT/WST assays. OCL function and bone resorption were measured using the OsteoAssays and TRAP staining. The RPMI-8226 cell line was used to isolate MM-SPs by flow-cytometry based Hoechst 33342 staining. SL-401 is a recombinant protein expressed in E. coli. The hybrid gene is comprised of human IL-3 fused to truncated diphtheria toxin (DT). The IL-3 domain of SL-401, which replaces the native binding domain of DT, targets SL-401 to cells that overexpress IL-3R. SL-401 was obtained from Stemline Therapeutics, NY; bortezomib, lenalidomide, pomalidomide, and melphalan were purchased from Selleck Chemicals. For animal model studies, SL-401 (16.5 μg/kg) was administered intravenously daily for 2 weeks. Results SL-401 triggered significant apoptosis in pDCs (>95%) at low picomolar concentrations that are well within clinically achievable doses.Higher concentrations of SL-401 trigger a modest apoptosis (30%± 1.3% apoptosis at 83 ng/ml or 1.3 nM) in MM cells due to lower IL-3R expression versus pDCs. Moreover, SL-401 did not significantly induce apoptosis of normal PBMCs (8% ± 0.5% apoptosis at 83 ng/ml), suggesting a favorable therapeutic index for SL-401. SL-401 inhibited pDC-induced growth of MM cell lines and patient MM cells in a dose-dependent manner. Moreover, 6 of 9 MM samples were obtained from patients whose disease was progressing while on bortezomib, dexamethasone, and lenalidomide therapies. Combinations of SL-401 with melphalan, bortezomib, lenalidomide, or pomalidomide induced synergistic anti-MM activity (Combination index < 1). SL-401 blocked monocyte-derived osteoclast formation in a dose-dependent fashion, as well as restored MM patient BM-derived osteoblast formation. Having defined the efficacy of SL-401 in targeting pDCs and pDC-triggered MM cell growth in vitro, we validated these findings in vivo using our murine xenograft model of human MM, under auspices of protocols approved by our institutional animal protection committee. SL-401 inhibited pDC-induced MM cell growth in vivo and prolonged survival in a murine xenograft model of human MM. We also evaluated the efficacy of SL-401 in vivo using our SCID-human (SCID-hu) mouse model, which reflects the human BM milieu with human cytokines and extracellular matrix proteins. SL-401 significantly abrogated pDC-triggered MM cell growth in vivo in SCID-hu model. Conclusions Our data provide the basis for using SL-401 to directly target pDCs and inhibit the pDC-MM interaction as well as target osteolytic bone disease in novel therapeutic strategies in order to enhance MM cytotoxicity, overcome drug resistance, and improve patient outcome. The interactions of immune effector cells in the MM tumor microenvironment also provide a rationale for combining SL-401 with checkpoint inhibitors. Correspondence: Dharminder Chauhan Disclosures Macri: Stemline Therapeutics, Inc., New York, NY USA: Employment. Brooks:Stemline Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties. Rowinsky:Stemline Therapeutics: Employment, Equity Ownership. Richardson:Millennium Takeda: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Gentium S.p.A.: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees; Celgene Corporation: Membership on an entity's Board of Directors or advisory committees. Chauhan:Stemline Therapeutics: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document