E-wave generated intraventricular diastolic vortex to L-wave relation: model-based prediction with in vivo validation

2014 ◽  
Vol 117 (3) ◽  
pp. 316-324 ◽  
Author(s):  
Erina Ghosh ◽  
Shelton D. Caruthers ◽  
Sándor J. Kovács

The Doppler echocardiographic E-wave is generated when the left ventricle's suction pump attribute initiates transmitral flow. In some subjects E-waves are accompanied by L-waves, the occurrence of which has been correlated with diastolic dysfunction. The mechanisms for L-wave generation have not been fully elucidated. We propose that the recirculating diastolic intraventricular vortex ring generates L-waves and based on this mechanism, we predict the presence of L-waves in the right ventricle (RV). We imaged intraventricular flow using Doppler echocardiography and phase-contrast magnetic resonance imaging (PC-MRI) in 10 healthy volunteers. L-waves were recorded in all subjects, with highest velocities measured typically 2 cm below the annulus. Fifty-five percent of cardiac cycles (189 of 345) had L-waves. Color M-mode images eliminated mid-diastolic transmitral flow as the cause of the observed L-waves. Three-dimensional intraventricular flow patterns were imaged via PC-MRI and independently validated our hypothesis. Additionally as predicted, L-waves were observed in the RV, by both echocardiography and PC-MRI. The re-entry of the E-wave-generated vortex ring flow through a suitably located echo sample volume can be imaged as the L-wave. These waves are a general feature and a direct consequence of LV and RV diastolic fluid mechanics.

2020 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Cezary Grochowski ◽  
Kamil Jonak ◽  
Marcin Maciejewski ◽  
Andrzej Stępniewski ◽  
Mansur Rahnama-Hezavah

Purpose: The aim of this study was to assess the volumetry of the hippocampus in the Leber’s hereditary optic neuropathy (LHON) of blind patients. Methods: A total of 25 patients with LHON were randomly included into the study from the national health database. A total of 15 patients were selected according to the inclusion criteria. The submillimeter segmentation of the hippocampus was based on three-dimensional spoiled gradient recalled acquisition in steady state (3D-SPGR) BRAVO 7T magnetic resonance imaging (MRI) protocol. Results: Statistical analysis revealed that compared to healthy controls (HC), LHON subjects had multiple significant differences only in the right hippocampus, including a significantly higher volume of hippocampal tail (p = 0.009), subiculum body (p = 0.018), CA1 body (p = 0.002), hippocampal fissure (p = 0.046), molecular layer hippocampus (HP) body (p = 0.014), CA3 body (p = 0.006), Granule Cell (GC) and Molecular Layer (ML) of the Dentate Gyrus (DG)–GC ML DG body (p = 0.003), CA4 body (p = 0.001), whole hippocampal body (p = 0.018), and the whole hippocampus volume (p = 0.023). Discussion: The ultra-high-field magnetic resonance imaging allowed hippocampus quality visualization and analysis, serving as a powerful in vivo diagnostic tool in the diagnostic process and LHON disease course assessment. The study confirmed previous reports regarding volumetry of hippocampus in blind individuals.


1999 ◽  
Vol 121 (6) ◽  
pp. 650-656 ◽  
Author(s):  
F. T. Sheehan ◽  
F. E. Zajac ◽  
J. E. Drace

Improper patellar tracking is often considered to be the cause of patellar-femoral pain. Unfortunately, our knowledge of patellar-femoral-tibial (knee) joint kinematics is severely limited due to a lack of three-dimensional, noninvasive, in vivo measurement techniques. This study presents the first large-scale, dynamic, three-dimensional, noninvasive, in vivo study of nonimpaired knee joint kinematics during volitional leg extensions. Cine-phase contrast magnetic resonance imaging was used to measure the velocity profiles of the patella, femur, and tibia in 18 unimpaired knees during leg extensions, resisted by a 34 N weight. Bone displacements were calculated through integration and then converted into three-dimensional orientation angles. We found that the patella displaced laterally, superiorly, and anteriorly as the knee extended. Further, patellar flexion lagged knee flexion, patellar tilt was variable, and patellar rotation was fairly constant throughout extension.


2001 ◽  
Vol 49 (3) ◽  
pp. 275-284
Author(s):  
Zs. Petrási ◽  
R. Romvári ◽  
G. Bajzik ◽  
B. Fenyves ◽  
I. Repa ◽  
...  

A dynamic magnetic resonance imaging (MRI) method was developed for in vivo examination of the pig heart. Measurements were carried out on 15 meat-type pigs of different liveweight using a 1.5 T equipment. Inhalation anaesthesia was applied, then data acquisition was synchronised by ECG gating. Depending on the heart rate and heart size, in each case 8 to 10 slices and in each slice 8 to 14 phases were acquired prospectively according to one heart cycle. During the post-processing of the images the left and the right ventricular volumes were determined. The values measured at 106 kg liveweight are 2.5 times higher than those obtained at 22 kg, while the ejection fractions are equal. The calculated cardiac output values were 3.5 l (22 kg, 132 beats/min.), and 6.0 l (106 kg, 91 beats/min.), respectively. After measuring the wall thickness, the contraction values were also determined for the septum (70%), and for the anterior (61%), posterior (41%) and lateral (54%) walls of the left ventricle. Three-dimensional animated models of the ventricles were constructed. Based on the investigations performed, the preconditioning, the anaesthetic procedure, the specific details of ECG measurement and the correct MR imaging technique were worked out.


1996 ◽  
Vol 271 (6) ◽  
pp. H2677-H2688 ◽  
Author(s):  
A. A. Young ◽  
Z. A. Fayad ◽  
L. Axel

We describe a method for reconstructing the three-dimensional motion and deformation of the midwall surface of the right ventricular free wall (RVFW) using magnetic resonance tissue tagging. Tag points were defined where the tag stripes intersected the midwall contour and were tracked through systole in both short- and long-axis images. A finite-element model of the midwall surface of the RVFW was constructed to fit the midwall shape at end diastole. The model was then deformed to each subsequent frame by fitting the tag displacements and midwall contour locations. The method was applied to two human studies, a normal subject and a patient with right ventricular hypertrophy. The root mean squared error between model tag planes and tracked tag points was 0.70 mm for the normal heart (180 points) and 0.67 mm for the hypertrophic heart (52 points), both less than the image pixel size of approximately 1.0 mm. The differences in contraction patterns were visualized between the two studies. We conclude that this method allows accurate, noninvasive measurement of in vivo RVFW deformation.


RSC Advances ◽  
2015 ◽  
Vol 5 (59) ◽  
pp. 47529-47537 ◽  
Author(s):  
S. Moradi ◽  
O. Akhavan ◽  
A. Tayyebi ◽  
R. Rahighi ◽  
M. Mohammadzadeh ◽  
...  

In vivo positive contrast MRI by magnetite/dextran-functionalized graphene oxide (SPIO-Dex-FGO) as compared to Magnevist® (the right rat).


2021 ◽  
Vol 8 ◽  
Author(s):  
Gaetano Thiene ◽  
Carla Frescura ◽  
Massimo Padalino ◽  
Cristina Basso ◽  
Stefania Rizzo

Anatomy of subepicardial coronary arteries became a topic of investigation at autopsy in Florence (Italy) by Banchi in the early twentieth century, with the discovery of dominant and balanced patterns. Thereafter, in the 60's of the same century Baroldi in Milan did post-mortem injection with spectacular three-dimensional casts. Later Sones at the Cleveland Clinic introduced selective coronary arteriography for in vivo visualization of coronary arteries. In the present chapter we show these patterns, as well as normal variants of origin and course with questionable risk of ischemia, like myocardial bridge as well as origin of the left circumflex coronary artery from the right sinus with retroaortic course. As far as embryology, the coronary arteries and veins are epicardial in origin and finally connect the former with the aorta, and the latter with the sinus venosus. At the time of spongy myocardium, intramural blood supply derives directly by the ventricular cavities, whereas later, at the time of myocardial compaction, vascularization originates from the subepicardial network. The connection of the subepicardial plexus with the aorta occurs with prongs of the peritruncal ring, which penetrate the facing aortic sinuses. Septation of truncus arteriosus is not responsible for the final position of the coronary orifices. Infact in transposition of the great arteries coronary ostia are regularly located within facing sinuses of the anterior aorta.


2021 ◽  
Author(s):  
Haoxiang Xu ◽  
Wangqiang Wen ◽  
Zepei Zhang ◽  
Jianqiang Bai ◽  
Bowen Kou ◽  
...  

Abstract BackgroundQuantitative data on in vivo vertebral disc deformations are critical for enhancing our understanding of spinal pathology and improving the design of surgical materials. This study investigated in vivo lumbar intervertebral disc deformations during axial rotations under different load-bearing conditions.MethodsTwelve healthy subjects (7 males and 5 females) between the ages of 25 and 39 were recruited. Using a combination of a dual fluoroscopic imaging system (DFIS) and CT, the images of L3-5 segments scanned by CT were transformed into three-dimensional models, which matched the instantaneous images of the lumbar spine taken by a double fluorescent X-ray system during axial rotations to reproduce motions. Then, the kinematic data of the compression and shear deformations of the lumbar disc and the coupled bending of the vertebral body were obtained.ResultsRelative to the supine position, the average compression deformation caused by rotation is between +10% and -40%, and the shear deformation is between 17% and 50%. Under physiological weightbearing loads, different levels of lumbar discs exhibit similar deformation patterns, and the deformation patterns of left and right rotations are approximately symmetrical. The deformation patterns change significantly under a 10 kg load, with the exception of the L3-4 disc during the right rotation.ConclusionThe deformation of the lumbar disc was direction-specific and level-specific during axial rotations and was affected by extra weight. These data can provide new insights into the biomechanics of the lumbar spine and optimize the parameters of artificial lumbar spine devices.


2016 ◽  
Vol 77 (2) ◽  
pp. 794-805 ◽  
Author(s):  
Mohammed S.M. Elbaz ◽  
Rob J. van der Geest ◽  
Emmeline E. Calkoen ◽  
Albert de Roos ◽  
Boudewijn P.F. Lelieveldt ◽  
...  

Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Sign in / Sign up

Export Citation Format

Share Document