scholarly journals Cardiovascular effects of the respiratory muscle metaboreflexes in dogs: rest and exercise

2003 ◽  
Vol 95 (3) ◽  
pp. 1159-1169 ◽  
Author(s):  
Joshua R. Rodman ◽  
Kathleen S. Henderson ◽  
Curtis A. Smith ◽  
Jerome A. Dempsey

In awake dogs, lactic acid was injected into the phrenic and deep circumflex iliac arteries to elicit the diaphragm and abdominal muscle metaboreflexes, respectively. At rest, injections into the phrenic or deep circumflex iliac arteries significantly increased mean arterial blood pressure 21 ± 7% and reduced cardiac output 6 ± 2% and blood flow to the hindlimbs 20 ± 9%. Simultaneously, total systemic, hindlimb, and abdominal expiratory muscle vascular conductances were reduced. These cardiovascular responses were not accompanied by significant changes in the amplitude or timing of the diaphragm electromyogram. During treadmill exercise that increased cardiac output, hindlimb blood flow, and vascular conductance 159 ± 106, 276 ± 309, and 299 ± 90% above resting values, lactic acid injected into the phrenic or deep circumflex iliac arteries also elicited pressor responses and reduced hindlimb blood flow and vascular conductance. Adrenergic receptor blockade at rest eliminated the cardiovascular effects of the respiratory muscle metaboreflex. We conclude that the cardiovascular effects of respiratory muscle metaboreflex activation are similar to those previously reported for limb muscles. When activated via metabolite production, the respiratory muscle metaboreflex may contribute to the increased sympathetic tone and redistribution of blood flow during exercise.

2010 ◽  
Vol 109 (2) ◽  
pp. 271-278 ◽  
Author(s):  
Matthew Coutsos ◽  
Javier A. Sala-Mercado ◽  
Masashi Ichinose ◽  
ZhenHua Li ◽  
Elizabeth J. Dawe ◽  
...  

Muscle metaboreflex activation during dynamic exercise induces a substantial increase in cardiac work and oxygen demand via a significant increase in heart rate, ventricular contractility, and afterload. This increase in cardiac work should cause coronary metabolic vasodilation. However, little if any coronary vasodilation is observed due to concomitant sympathetically induced coronary vasoconstriction. The purpose of the present study is to determine whether the restraint of coronary vasodilation functionally limits increases in left ventricular contractility. Using chronically instrumented, conscious dogs ( n = 9), we measured mean arterial pressure, cardiac output, and circumflex blood flow and calculated coronary vascular conductance, maximal derivative of ventricular pressure (dp/d tmax), and preload recruitable stroke work (PRSW) at rest and during mild exercise (2 mph) before and during activation of the muscle metaboreflex. Experiments were repeated after systemic α1-adrenergic blockade (∼50 μg/kg prazosin). During prazosin administration, we observed significantly greater increases in coronary vascular conductance (0.64 ± 0.06 vs. 0.46 ± 0.03 ml·min−1·mmHg−1; P < 0.05), circumflex blood flow (77.9 ± 6.6 vs. 63.0 ± 4.5 ml/min; P < 0.05), cardiac output (7.38 ± 0.52 vs. 6.02 ± 0.42 l/min; P < 0.05), dP/d tmax (5,449 ± 339 vs. 3,888 ± 243 mmHg/s; P < 0.05), and PRSW (160.1 ± 10.3 vs. 183.8 ± 9.2 erg·103/ml; P < 0.05) with metaboreflex activation vs. those seen in control experiments. We conclude that the sympathetic restraint of coronary vasodilation functionally limits further reflex increases in left ventricular contractility.


1985 ◽  
Vol 59 (6) ◽  
pp. 1802-1808 ◽  
Author(s):  
S. N. Hussain ◽  
C. Roussos

Respiratory muscle blood flow and organ blood flow during endotoxic shock were studied in spontaneously breathing dogs (SB, n = 6) and mechanically ventilated dogs (MV, n = 5) with radiolabeled microspheres. Shock was produced by a 5-min intravenous injection of Escherichia coli endotoxin (0.55:B5, Difco, 10 mg/kg) suspended in saline. Mean arterial blood pressure and cardiac output in the SB group dropped to 59 and 45% of control values, respectively. There was a similar reduction in arterial blood pressure and cardiac output in the MV group. Total respiratory muscle blood flow in the SB group increased significantly from the control value of 51 +/- 4 ml/min (mean +/- SE) to 101 +/- 22 ml/min at 60 min of shock. In the MV group, respiratory muscle perfusion fell from control values of 43 +/- 12 ml/min to 25 +/- 3 ml/min at 60 min of shock. In the SB group, 8.8% of the cardiac output was received by the respiratory muscle during shock in comparison with 1.9% in the MV group. In both groups of dogs, blood flow to most organs was compromised during shock; however, blood flow to the brain, gut, and skeletal muscles was higher in the MV group than in the SB group. Thus by mechanical ventilation a fraction of the cardiac output used by the working respiratory muscles can be made available for perfusion of other organs during endotoxic shock.


1987 ◽  
Vol 252 (1) ◽  
pp. R127-R133 ◽  
Author(s):  
B. R. Walker

Experiments were performed to test the possible involvement of arginine vasopressin (AVP) in the systemic cardiovascular responses to acute hypercapnic acidosis in conscious chronically instrumented rats. Exposure to 6% CO2 caused arterial PCO2 to rise from 34 +/- 2 to 53 +/- 1 Torr. This level of hypercapnia was associated with a consistent bradycardia; however, cardiac output, blood pressure, and total peripheral resistance were not significantly affected. Administration of 10 micrograms/kg iv of the specific V1 vasopressinergic antagonist d(CH2)5Tyr(Me)AVP during 6% CO2 had no effect on any of the measured hemodynamic variables. Furthermore, d(CH2)5Tyr(Me)AVP also had no effect in normocapnic control animals. Exposure to a more severe level of hypercapnia (10% CO2, arterial PCO2 = 89 +/- 1 Torr) resulted in marked hemodynamic alterations. Profound bradycardia and decreased cardiac output in addition to increases in mean arterial blood pressure and total peripheral resistance were observed. V1 vasopressinergic antagonism during 10% CO2 had no effect on heart rate but greatly increased cardiac output. In addition, blood pressure fell and resistance was decreased below prehypercapnic levels. These data suggest that a number of the hemodynamic alterations associated with severe hypercapnic acidosis in the conscious rat may be mediated by the peripheral cardiovascular effects of enhanced AVP release.


2008 ◽  
Vol 104 (4) ◽  
pp. 1202-1210 ◽  
Author(s):  
Jordan A. Guenette ◽  
Ioannis Vogiatzis ◽  
Spyros Zakynthinos ◽  
Dimitrios Athanasopoulos ◽  
Maria Koskolou ◽  
...  

Measurement of respiratory muscle blood flow (RMBF) in humans has important implications for understanding patterns of blood flow distribution during exercise in healthy individuals and those with chronic disease. Previous studies examining RMBF in humans have required invasive methods on anesthetized subjects. To assess RMBF in awake subjects, we applied an indicator-dilution method using near-infrared spectroscopy (NIRS) and the light-absorbing tracer indocyanine green dye (ICG). NIRS optodes were placed on the left seventh intercostal space at the apposition of the costal diaphragm and on an inactive control muscle (vastus lateralis). The primary respiratory muscles within view of the NIRS optodes include the internal and external intercostals. Intravenous bolus injection of ICG allowed for cardiac output (by the conventional dye-dilution method with arterial sampling), RMBF, and vastus lateralis blood flow to be quantified simultaneously. Esophageal and gastric pressures were also measured to calculate the work of breathing and transdiaphragmatic pressure. Measurements were obtained in five conscious humans during both resting breathing and three separate 5-min bouts of constant isocapnic hyperpnea at 27.1 ± 3.2, 56.0 ± 6.1, and 75.9 ± 5.7% of maximum minute ventilation as determined on a previous maximal exercise test. RMBF progressively increased (9.9 ± 0.6, 14.8 ± 2.7, 29.9 ± 5.8, and 50.1 ± 12.5 ml·100 ml−1·min−1, respectively) with increasing levels of ventilation while blood flow to the inactive control muscle remained constant (10.4 ± 1.4, 8.7 ± 0.7, 12.9 ± 1.7, and 12.2 ± 1.8 ml·100 ml−1·min−1, respectively). As ventilation rose, RMBF was closely and significantly correlated with 1) cardiac output ( r = 0.994, P = 0.006), 2) the work of breathing ( r = 0.995, P = 0.005), and 3) transdiaphragmatic pressure ( r = 0.998, P = 0.002). These data suggest that the NIRS-ICG technique provides a feasible and sensitive index of RMBF at different levels of ventilation in humans.


PEDIATRICS ◽  
1985 ◽  
Vol 76 (6) ◽  
pp. 918-921
Author(s):  
Frans J. Walther ◽  
Paul Y. K. Wu ◽  
Bijan Siassi

Phototherapy is known to increase peripheral blood flow in neonates, but information on the associated cardiovascular effects is not available. Using pulsed Doppler echocardiography we evaluated cardiac output and stroke volume in 12 preterm and 13 term neonates during and after phototherapy. We concomitantly measured arterial limb blood flow by strain gauge plethysmography and skin blood flow by photoplethysmography. Cardiac output decreased by 6% due to reduced stroke volume during phototherapy, whereas total limb blood flow and skin blood flow increased by 38% and 41%, respectively. Peripheral blood flow increments tended to be higher in the preterm than in the term infants. The reduced stroke volume during phototherapy may be an expression of reduced activity of the newborn during phototherapy. For healthy neonates the reduction in cardiac output is minimal, but for sick infants with reduced cardiac output, this reduction may further aggravate the decrease in tissue perfusion.


Author(s):  
Weiyu Li ◽  
Amy G. Tsai ◽  
Marcos Intaglietta ◽  
Daniel M. Tartakovsky

­­ ­Although some of the cardiovascular responses to changes in hematocrit (Hct) are not fully quantified experimentally, available information is sufficient to build a mathematical model of the consequences of treating anemia by introducing RBCs into the circulation via blood transfusion. We present such a model, which describes how the treatment of normovolemic anemia with blood transfusion impacts oxygen (O2) delivery (DO2, the product of blood O2 content and arterial blood flow) by the microcirculation. Our analysis accounts for the differential response of the endothelium to the wall shear stress (WSS) stimulus, changes in nitric oxide (NO) production due to modification of blood viscosity caused by alterations of both hematocrit (Hct) and cell free layer thickness, as well as for their combined effects on microvascular blood flow and DO2. Our model shows that transfusions of 1- and 2-unit of blood have a minimal effect on DO2 if the microcirculation is unresponsive to the WSS stimulus for NO production that causes vasodilatation increasing blood flow and DO2. Conversely, in a fully WSS responsive organism, blood transfusion significantly enhances blood flow and DO2, because increased viscosity stimulates endothelial NO production causing vasodilatation. This finding suggests that evaluation of a patients' pre-transfusion endothelial WSS responsiveness should be beneficial in determining the optimal transfusion requirements for treating anemic patients.


2002 ◽  
Vol 93 (6) ◽  
pp. 1918-1924 ◽  
Author(s):  
Robert Carter ◽  
Thad E. Wilson ◽  
Donald E. Watenpaugh ◽  
Michael L. Smith ◽  
Craig G. Crandall

To identify the effects of exercise recovery mode on cutaneous vascular conductance (CVC) and sweat rate, eight healthy adults performed two 15-min bouts of upright cycle ergometry at 60% of maximal heart rate followed by either inactive or active (loadless pedaling) recovery. An index of CVC was calculated from the ratio of laser-Doppler flux to mean arterial pressure. CVC was then expressed as a percentage of maximum (%max) as determined from local heating. At 3 min postexercise, CVC was greater during active recovery (chest: 40 ± 3, forearm: 48 ± 3%max) compared with during inactive recovery (chest: 21 ± 2, forearm: 25 ± 4%max); all P < 0.05. Moreover, at the same time point sweat rate was greater during active recovery (chest: 0.47 ± 0.10, forearm: 0.46 ± 0.10 mg · cm−2 · min−1) compared with during inactive recovery (chest: 0.28 ± 0.10, forearm: 0.14 ± 0.20 mg · cm−2 · min−1); all P < 0.05. Mean arterial blood pressure, esophageal temperature, and skin temperature were not different between recovery modes. These data suggest that skin blood flow and sweat rate during recovery from exercise may be modulated by nonthermoregulatory mechanisms and that sustained elevations in skin blood flow and sweat rate during mild active recovery may be important for postexertional heat dissipation.


1987 ◽  
Vol 62 (2) ◽  
pp. 606-610 ◽  
Author(s):  
P. G. Snell ◽  
W. H. Martin ◽  
J. C. Buckey ◽  
C. G. Blomqvist

Lower leg blood flow and vascular conductance were studied and related to maximal oxygen uptake in 15 sedentary men (28.5 +/- 1.2 yr, mean +/- SE) and 11 endurance-trained men (30.5 +/- 2.0 yr). Blood flows were obtained at rest and during reactive hyperemia produced by ischemic exercise to fatigue. Vascular conductance was computed from blood flow measured by venous occlusion plethysmography, and mean arterial blood pressure was determined by auscultation of the brachial artery. Resting blood flow and mean arterial pressure were similar in both groups (combined mean, 3.0 ml X min-1 X 100 ml-1 and 88.2 mmHg). After ischemic exercise, blood flows were 29- and 19-fold higher (P less than 0.001) than rest in trained (83.3 +/- 3.8 ml X min-1 X 100 ml-1) and sedentary subjects (61.5 +/- 2.3 ml X min-1 X 100 ml-1), respectively. Blood pressure and heart rate were only slightly elevated in both groups. Maximal vascular conductance was significantly higher (P less than 0.001) in the trained compared with the sedentary subjects. The correlation coefficients for maximal oxygen uptake vs. vascular conductance were 0.81 (trained) and 0.45 (sedentary). These data suggest that physical training increases the capacity for vasodilation in active limbs and also enables the trained individual to utilize a larger fraction of maximal vascular conductance than the sedentary subject.


PEDIATRICS ◽  
1977 ◽  
Vol 59 (6) ◽  
pp. 858-864
Author(s):  
G. Gabriele ◽  
C. R. Rosenfeld ◽  
D. E. Fixler ◽  
J. M. Wheeler

Continuous airway pressure delivered by a head-box is an accepted means of treating clinical hyaline membrane disease. To investigate hemodynamic alterations resulting from its use, eight newborn lambs, 1 to 6 days of age, were studied at 6 and 11 mm Hg of positive pressure, while spontaneously breathing room air. Organ blood flows and cardiac output were measured with 25 µ-diameter radioactive microspheres. Heart rate, left ventricular pressure, and arterial blood gases did not change during the study. Jugular venous pressures increased from 6.4 mm Hg to 18.6 and 24.2 mm Hg at 6 and 11 mm Hg, respectively (P &lt; .005). Cardiac output decreased approximately 20% at either intrachamber pressure setting. Renal blood flow fell 21% at 11 mm Hg. No significant changes in blood flow were found in the brain, gastrointestinal tract, spleen, heart, or liver when compared to control flows. Of particular interest was the finding of a 28% reduction in ocular blood flow at 6 mm Hg and 52% at 11 mm Hg. From these results, we conclude that substantial cardiovascular alterations may occur during the application of head-box continuous airway pressure breathing, including a significant reduction in ocular blood flow.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Stig Müller ◽  
Ole-Jakob How ◽  
Stig E Hermansen ◽  
Truls Myrmel

Arginin Vasopressin (AVP) is increasingly used to restore mean arterial pressure (MAP) in various circulatory shock states including cardiogenic shock. This is potentially deleterious since AVP is also known to reduce cardiac output by increasing vascular resistance. Aim: We hypothesized that restoring MAP by AVP improves vital organ blood flow in experimental acute cardiac failure. Methods: Cardiac output (CO) and arterial blood flow to the brain, heart, kidney and liver were measured in nine pigs by transit-time flow probes. Heart function and contractility were measured using left ventricular Pressure-Volume catheters. Catheters in central arteries and veins were used for pressure recordings and blood sampling. Left ventricular dysfunction was induced by intermittent coronary occlusions, inducing an 18 % reduction in cardiac output and a drop in MAP from 87 ± 3 to 67 ± 4 mmHg. Results: A low-dose therapeutic infusion of AVP (0.005 u/kg/min) restored MAP but further impaired systemic perfusion (CO and blood flow to the brain, heart and kidney reduced by 29, 18, 23 and 34 %, respectively). The reduced blood flow was due to a 2.0, 2.2, 1.9 and 2.1 fold increase in systemic, brain, heart and kidney specific vascular resistances, respectively. Contractility remained unaffected by AVP. The hypoperfusion induced by AVP was most likely responsible for observed elevated plasma lactate levels and an increased systemic oxygen extraction. Oxygen saturation in blood drawn from the great cardiac vein fell from 31 ± 1 to 22 ± 3 % dropping as low as 10 % in one pig. Finally, these effects were reversed forty minutes after weaning the pigs form the drug. Conclusion: The pronounced reduction in coronary blood flow point to a potentially deleterious effect in postoperative cardiac surgical patients and in patients with coronary heart disease. Also, this is the first study to report a reduced cerebral perfusion by AVP.


Sign in / Sign up

Export Citation Format

Share Document