scholarly journals Effect of helium preconditioning on neurological decompression sickness in rats

2019 ◽  
Vol 126 (4) ◽  
pp. 934-940 ◽  
Author(s):  
Rongjia Zhang ◽  
Yongchao Yu ◽  
Anatol Manaenko ◽  
Hongda Bi ◽  
Ning Zhang ◽  
...  

Decompression sickness (DCS) occurs because of an excessively rapid and extensive reduction of the ambient pressure. Bubble-induced spinal cord ischemia is generally considered as a part of neurological DCS pathogenesis. Because helium preconditioning (HPC) recently demonstrated beneficial properties against ischemic damage, we hypothesized that HPC may decrease the neurological deficits of DCS in rats. Seventy-five male Sprague-Dawley rats were divided into a non-HPC group ( n = 25) and a HPC group ( n = 25) and 25 naive animals that were euthanized for histological examination ( n = 5) or anesthetized for baseline somatosensory evoked potential (SSEP) recordings ( n = 20). To induce DCS, rats were compressed with air to a pressure of 709 kPa for 60 min and decompressed at a rate of 203 kPa/min. HPC was administered as three episodes of 79% helium-21% oxygen mixture inhalation for 5 min interspersed with 5 min of air breathing. We found that HPC resulted in significantly decreased DCS incidence and delay of DCS onset. HPC also improved animal performance on the grip test after decompression and significantly ameliorated decompression-induced decrease of platelet number. Furthermore, the incidence of abnormal SSEP waves and histological spinal lesions was significantly reduced by HPC. We conclude that HPC can decrease the occurrence of DCS and ameliorate decompression-induced neurological deficits. NEW & NOTEWORTHY Helium preconditioning ameliorates decompression-induced neurological deficits in rats. Helium breathing before air dives may prevent neurological deficit and attenuate symptoms after decompression.

2014 ◽  
Vol 34 (10) ◽  
pp. e1-e8 ◽  
Author(s):  
Vélvá M Combs ◽  
Heather D Crispell ◽  
Kelly L Drew

Stimulation of N-methyl-D-aspartate receptors (NMDAR) contributes to regenerative neuroplasticity following the initial excitotoxic insult during cerebral ischemia. Stimulation of NMDAR with the partial NMDAR agonist D-cycloserine (DCS) improves outcome and restores hippocampal synaptic plasticity in models of closed head injury. We thus hypothesized that DCS would improve outcome following restoration of spontaneous circulation (ROSC) from cardiac arrest (CA). DCS (10 mg/kg, IP) was administered to Sprague-Dawley rats (male, 250–330 g; 63–84 days old) 24 and 48 hours after 6 or 8 minutes of asphyxial CA. Heart rate and blood pressure declined similarly in all groups. Animals showed neurological deficits after 6 and 8 minutes CA ( P < 0.05, Tukey) and these deficits recovered more quickly after 6 minutes than after 8 minutes of CA. CA decreased the number of healthy neurons within CA1 with no difference between 6 and 8 minutes duration of CA (180.8 ± 27.6 (naïve, n = 5) versus 46.3 ± 33.8 (all CA groups, n = 27) neurons per mm CA1). DCS had no effect on neurological deficits or CA1 hippocampal cell counts ( P > 0.05, Tukey).


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yun Han ◽  
Xiao-kun Geng ◽  
Hangil Lee ◽  
Fengwu Li ◽  
Yuchuan Ding

Background and Purpose. Studies have shown that interischemia hypothermia is able to reduce the size of myocardial infarctions and improve their clinical outcomes. The present study determined whether interischemia hypothermia induced by the pharmacological approach induced stronger neuroprotection in ischemic brains. Methods. Adult male Sprague Dawley rats were studied in 4 groups: (1) sham; (2) stroke; (3) stroke treated with pharmacological hypothermia before reperfusion (interischemia hypothermia); and (4) stroke treated with pharmacological hypothermia after reperfusion is initiated (inter-reperfusion hypothermia). The combination of chlorpromazine and promethazine with dihydrocapsaicin (DHC) was used to induce hypothermia. To compare the neuroprotective effects of drug-induced hypothermia between the interischemia and inter-reperfusion groups, brain damage was evaluated using infarct volume and neurological deficits at 24 h reperfusion. In addition, mRNA expressions of NADPH oxidase (NOX) subunits (gp91phox, p67phox, p47phox, and p22phox) and glucose transporter subtypes (GLUT1 and GLUT3) were determined by real-time PCR at 6 and 24 h reperfusion. ROS production was measured by flow cytometry assay at the same time points. Results. In both hypothermia groups, the cerebral infarct volumes and neurological deficits were reduced in the ischemic rats. At 6 and 24 h reperfusion, ROS production and the expressions of NOX subunits and glucose transporter subtypes were also significantly reduced in both hypothermia groups as compared to the ischemic group. While there were no statistically significant differences between the two hypothermia groups at 6 h reperfusion, brain damage was significantly further decreased by interischemia hypothermia at 24 h. Conclusion. Both interischemia and inter-reperfusion pharmacological hypothermia treatments play a role in neuroprotection after stroke. Interischemia hypothermia treatment may be better able to induce stronger neuroprotection after ischemic stroke. This study provides a new avenue and reference for stronger neuroprotective hypothermia before vascular recanalization in stroke patients.


2018 ◽  
Vol 46 (06) ◽  
pp. 1225-1241 ◽  
Author(s):  
Yucong Peng ◽  
Pingyou He ◽  
Linfeng Fan ◽  
Hangzhe Xu ◽  
Jianru Li ◽  
...  

Subarachnoid hemorrhage (SAH) is a severe cerebrovascular disease with few effective pharmacotherapies available. Salvia miltiorrhiza, a traditional Chinese medicinal herb, has been widely used to treat cardiovascular diseases for centuries. Recent studies have demonstrated that magnesium lithospermate B (MLB), a bioactive ingredient extracted from Salvia miltiorrhiza, exerts neuroprotective effects in several central nervous system insults. However, little is known about the role of MLB in SAH-induced brain injury and the exact molecular mechanism. In the current study, we studied the neuroprotective effects of MLB in SAH and explored the potential mechanism. Adult male Sprague–Dawley rats were subjected to an endovascular perforation process to produce an SAH model. MLB was administrated intraperitoneally at 30[Formula: see text]min after SAH with a dose of 25[Formula: see text]mg/kg or 50[Formula: see text]mg/kg. We found that administration of MLB significantly attenuated brain edema and neurological deficits after SAH. In addition, immunofluorescence staining demonstrated that MLB dose-dependently inhibited the activation of microglia and reduced neuronal apoptosis. Western blot analysis showed that MLB decreased the expression of inflammatory cytokine TNF-[Formula: see text] and pro-apoptotic protein cleaved caspase-3. More importantly, MLB increased the expression of SIRT1, while inhibited the acetylation of NF-[Formula: see text]B. Furthermore, pretreatment with sirtinol (a selective inhibitor of SIRT1) reversed all the aforementioned effects of MLB after SAH. In conclusion, our results indicated that MLB exerted robust neuroprotective effects against SAH via suppressing neuroinflammation and apoptosis. These neuroprotective effects of MLB against SAH might be exerted via regulating the SIRT1/NF-[Formula: see text]B pathway. MLB or the SIRT1/NF-[Formula: see text]B pathway could be a novel and promising therapeutic strategy for SAH management.


2019 ◽  
Vol 14 (1) ◽  
pp. 595-602
Author(s):  
Jingbo Li ◽  
Shuda Chen ◽  
Jing Fan ◽  
Gao Zhang ◽  
Reng Ren

AbstractBackgroudThe aim of this study was to evaluate the therapeutic effect of minocycline on treating experimental subarachnoid hemorrhage (SAH) in rats and to explore its possible molecular mechanism.MethodsSAH was induced in male Sprague-Dawley rats by endovascular perforation. The rats were treated with minocycline (25 mg/kg or 50 mg/kg) or saline at 2 hand 12 h post SAH. Neurological function, cerebral hemorrhage, and edema were scored at 48 h post SAH. Cell death and P2X4 receptor (P2X4R) expression were observed in the prefrontal cortex (PFC).ResultsTreatment with a highdose of minocycline significantly improved the neurological function score, and attenuated cerebral hemorrhage and edema. Low-dose minocycline could reduce hemorrhage, but the effect on neurological deficits and brain edema was not obvious. Minocycline treatment could alleviate neuronal apoptosis in the PFC, which was related to reduced expression of inflammatory cytokines. Immunofluorescence showed that P2X4R on microglia was activated after SAH. Minocycline treatment inhibited P2X4R activation and further suppressed the phosphorylation of downstream p38 MAPK.ConclusionsMinocycline plays a neuroprotective role by attenuating early brain injury after experimental SAH. The therapeutic mechanism of minocycline may be mediated by the inhibition of P2X4R on microglia.


1997 ◽  
Vol 82 (5) ◽  
pp. 1479-1487 ◽  
Author(s):  
Ferenc Peták ◽  
Zoltán Hantos ◽  
Ágnes Adamicza ◽  
Tibor Asztalos ◽  
Peter D. Sly

Peták, Ferenc, Zoltán Hantos, Ágnes Adamicza, Tibor Asztalos, and Peter D. Sly. Methacholine-induced bronchoconstriction in rats: effects of intravenous vs. aerosol delivery. J. Appl. Physiol. 82(5): 1479–1487, 1997.—To determine the predominant site of action of methacholine (MCh) on lung mechanics, two groups of open-chest Sprague-Dawley rats were studied. Five rats were measured during intravenous infusion of MCh (iv group), with doubling of concentrations from 1 to 16 μg ⋅ kg−1 ⋅ min−1. Seven rats were measured after aerosol administration of MCh with doses doubled from 1 to 16 mg/ml (ae group). Pulmonary input impedance (Zl) between 0.5 and 21 Hz was determined by using a wave-tube technique. A model containing airway resistance (Raw) and inertance (Iaw) and parenchymal damping (G) and elastance (H) was fitted to the Zl spectra. In the iv group, MCh induced dose-dependent increases in Raw [peak response 270 ± 9 (SE) % of the control level; P < 0.05] and in G (340 ± 150%; P < 0.05), with no increase in Iaw (30 ± 59%) or H (111 ± 9%). In the ae group, the dose-dependent increases in Raw (191 ± 14%; P < 0.05) and G (385 ± 35%; P< 0.05) were associated with a significant increase in H (202 ± 8%; P < 0.05). Measurements with different resident gases [air vs. neon-oxygen mixture, as suggested (K. R. Lutchen, Z. Hantos, F. Peták,Á. Adamicza, and B. Suki. J. Appl. Physiol. 80: 1841–1849, 1996)] in the control and constricted states in another group of rats suggested that the entire increase seen in G during the iv challenge was due to ventilation inhomogeneity, whereas the ae challenge might also have involved real tissue contractions via selective stimulation of the muscarinic receptors.


Author(s):  
F. Follis ◽  
K. Miller ◽  
O.U. Scremin ◽  
S. Pett ◽  
R. Kessler ◽  
...  

AbstractBackgroundAs in the brain, recent evidence has suggested a defect in the microcirculation during the reperfusion period after spinal cord ischemia. This investigation was undertaken in order to delineate blood flow dynamics in the postischemic spinal cord of the rat.MethodsMale Sprague-Dawley rats underwent cross-clamping of the aorta and subclavian arteries (XC) for 11 minutes. Spinal cord blood flow (SCBF) was measured by autoradiography in the gray and white matter of cervical (Ce), thoracic (Th) and lumbar (Lu) regions during XC, 1 h, 6 h and 24 h (XC n = 8, 1 h n = 9, 6 h n = 9, and 24 h n = 11, groups) after XC. Control groups underwent surgical manipulations and SCBF measurement but no XC (Sham 1, n = 8), or clamping of the subclavian arteries only (Sham 2, n = 8).ResultsIn Ce cord, there was no difference between SCBF of 1 h, 6 h, 24 h and Sham 1. In Th cord, SCBF was reduced during XC (P < 0.003 vs. Sham 2), 1 h, 6 h (P < 0.04 and P < 0.01 vs. Sham 1). In Lu cord, SCBF was not detectable in XC, and depressed in 1 h (P < 0.003) and 6 h (P < 0.003). There was no difference between 24 h and Sham 1 in Ce, Th, and Lu cords.ConclusionsThe study demonstrated a period of delayed postischemic hypoperfusion in the white and gray matter of Th and Lu cord segments lasting 6 h after XC. The phenomenon may play an important role in the ultimate fate of neural elements with borderline viability after ischemic injury.


Author(s):  
D. J. McComb ◽  
J. Beri ◽  
F. Zak ◽  
K. Kovacs

Investigation of the spontaneous pituitary adenomas in rat have been limited mainly to light microscopic study. Furth et al. (1973) described them as chromophobic, secreting prolactin. Kovacs et al. (1977) in an ul trastructural investigation of adenomas of old female Long-Evans rats, found that they were composed of prolactin cells. Berkvens et al. (1980) using immunocytochemistry at the light microscopic level, demonstrated that some spontaneous tumors of old Wistar rats could contain GH, TSH or ACTH as well as PRL.


Author(s):  
F. G. Zaki ◽  
E. Detzi ◽  
C. H. Keysser

This study represents the first in a series of investigations carried out to elucidate the mechanism(s) of early hepatocellular damage induced by drugs and other related compounds. During screening tests of CNS-active compounds in rats, it has been found that daily oral administration of one of these compounds at a dose level of 40 mg. per kg. of body weight induced diffuse massive hepatic necrosis within 7 weeks in Charles River Sprague Dawley rats of both sexes. Partial hepatectomy enhanced the development of this peculiar type of necrosis (3 weeks instead of 7) while treatment with phenobarbital prior to the administration of the drug delayed the appearance of necrosis but did not reduce its severity.Electron microscopic studies revealed that early development of this liver injury (2 days after the administration of the drug) appeared in the form of small dark osmiophilic vesicles located around the bile canaliculi of all hepatocytes (Fig. 1). These structures differed from the regular microbodies or the pericanalicular multivesicular bodies. They first appeared regularly rounded with electron dense matrix bound with a single membrane. After one week on the drug, these vesicles appeared vacuolated and resembled autophagosomes which soon developed whorls of concentric lamellae or cisterns characteristic of lysosomes (Fig. 2). These lysosomes were found, later on, scattered all over the hepatocytes.


Author(s):  
D. J. McComb ◽  
J. Beri ◽  
F. Zak ◽  
K. Kovacs

Gonadotroph cell adenomas of the pituitary are infrequent in human patients and are not invariably associated with altered gonadal function. To date, no animal model of this tumor type exists. Herein, we describe spontaneous gonadotroph cell adenomas in old male and female Sprague-Dawley rats by histology, immunocytology and electron microscopy.The material consisted of the pituitaries of 27 male and 38 female Sprague Dawley rats, all 26 months of age or older, removed at routine autopsy. Sections of formal in-fixed, paraffin-embedded tissue were stained with hematoxylin-phloxine-saffron (HPS), the PAS method and the Gordon-Sweet technique for the demonstration of reticulin fibers. For immunostaining, sections were exposed to anti-rat β-LH, anti-ratβ-TSH, anti-rat PRL, anti-rat GH and anti-rat ACTH 1-39. For electron microscopy, tissue was fixed in 2.5% glutaraldehyde, postfixed in 1% OsO4 and embedded in epoxy-resin. Tissue fixed in 10% formalin, embedded in epoxy resin without osmification, was used for immunoelectron microscopy.


Sign in / Sign up

Export Citation Format

Share Document