Invited Review: Aging and sarcopenia

2003 ◽  
Vol 95 (4) ◽  
pp. 1717-1727 ◽  
Author(s):  
Timothy J. Doherty

Aging is associated with progressive loss of neuromuscular function that often leads to progressive disability and loss of independence. The term sarcopenia is now commonly used to describe the loss of skeletal muscle mass and strength that occurs in concert with biological aging. By the seventh and eighth decade of life, maximal voluntary contractile strength is decreased, on average, by 20-40% for both men and women in proximal and distal muscles. Although age-associated decreases in strength per unit muscle mass, or muscle quality, may play a role, the majority of strength loss can be accounted for by decreased muscle mass. Multiple factors lead to the development of sarcopenia and the associated impact on function. Loss of skeletal muscle fibers secondary to decreased numbers of motoneurons appears to be a major contributing influence, but other factors, including decreased physical activity, altered hormonal status, decreased total caloric and protein intake, inflammatory mediators, and factors leading to altered protein synthesis, must also be considered. The prevalence of sarcopenia, which may be as high as 30% for those ≥60 yr, will increase as the percentage of the very old continues to grow in our populations. The link between sarcopenia and disability among elderly men and women highlights the need for continued research into the development of the most effective interventions to prevent or at least partially reverse sarcopenia, including the role of resistance exercise and other novel pharmacological and nutritional interventions.

2003 ◽  
Vol 285 (4) ◽  
pp. E889-E898 ◽  
Author(s):  
Richard T. Hinkle ◽  
Elizabeth Donnelly ◽  
David B. Cody ◽  
Steven Samuelsson ◽  
Jana S. Lange ◽  
...  

Two receptors activated by the corticotropin-releasing factor (CRF) family of peptides have been identified, the CRF 1 receptor (CRF1R) and the CRF 2 receptor (CRF2R). Of these, the CRF2R is expressed in skeletal muscle. To understand the role of the CRF2R in skeletal muscle, we utilized CRFR knockout mice and CRF2R-selective agonists to modulate nerve damage and corticosteroid- and disuse-induced skeletal muscle atrophy in mice. These analyses demonstrated that activation of the CRF2R decreased nerve damage and corticosteroid- and disuse-induced skeletal muscle mass and function loss. In addition, selective activation of the CRF2R increased nonatrophy skeletal muscle mass. Thus we describe for the first time a novel activity of the CRF2R, modulation of skeletal muscle mass.


2014 ◽  
Vol 22 (2) ◽  
pp. 197-202 ◽  
Author(s):  
A.W. Visser ◽  
R. de Mutsert ◽  
M. Loef ◽  
S. le Cessie ◽  
M. den Heijer ◽  
...  

Diabetes Care ◽  
2012 ◽  
Vol 35 (8) ◽  
pp. 1672-1679 ◽  
Author(s):  
S. Volpato ◽  
L. Bianchi ◽  
F. Lauretani ◽  
F. Lauretani ◽  
S. Bandinelli ◽  
...  

2020 ◽  
Vol 21 (5) ◽  
pp. 1628 ◽  
Author(s):  
Keisuke Hitachi ◽  
Masashi Nakatani ◽  
Shiori Funasaki ◽  
Ikumi Hijikata ◽  
Mizuki Maekawa ◽  
...  

Skeletal muscle is a highly plastic organ that is necessary for homeostasis and health of the human body. The size of skeletal muscle changes in response to intrinsic and extrinsic stimuli. Although protein-coding RNAs including myostatin, NF-κβ, and insulin-like growth factor-1 (IGF-1), have pivotal roles in determining the skeletal muscle mass, the role of long non-coding RNAs (lncRNAs) in the regulation of skeletal muscle mass remains to be elucidated. Here, we performed expression profiling of nine skeletal muscle differentiation-related lncRNAs (DRR, DUM1, linc-MD1, linc-YY1, LncMyod, Neat1, Myoparr, Malat1, and SRA) and three genomic imprinting-related lncRNAs (Gtl2, H19, and IG-DMR) in mouse skeletal muscle. The expression levels of these lncRNAs were examined by quantitative RT-PCR in six skeletal muscle atrophy models (denervation, casting, tail suspension, dexamethasone-administration, cancer cachexia, and fasting) and two skeletal muscle hypertrophy models (mechanical overload and deficiency of the myostatin gene). Cluster analyses of these lncRNA expression levels were successfully used to categorize the muscle atrophy models into two sub-groups. In addition, the expression of Gtl2, IG-DMR, and DUM1 was altered along with changes in the skeletal muscle size. The overview of the expression levels of lncRNAs in multiple muscle atrophy and hypertrophy models provides a novel insight into the role of lncRNAs in determining the skeletal muscle mass.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 755 ◽  
Author(s):  
Carina O. Walowski ◽  
Wiebke Braun ◽  
Michael J. Maisch ◽  
Björn Jensen ◽  
Sven Peine ◽  
...  

Assessment of a low skeletal muscle mass (SM) is important for diagnosis of ageing and disease-associated sarcopenia and is hindered by heterogeneous methods and terminologies that lead to differences in diagnostic criteria among studies and even among consensus definitions. The aim of this review was to analyze and summarize previously published cut-offs for SM applied in clinical and research settings and to facilitate comparison of results between studies. Multiple published reference values for discrepant parameters of SM were identified from 64 studies and the underlying methodological assumptions and limitations are compared including different concepts for normalization of SM for body size and fat mass (FM). Single computed tomography or magnetic resonance imaging images and appendicular lean soft tissue by dual X-ray absorptiometry (DXA) or bioelectrical impedance analysis (BIA) are taken as a valid substitute of total SM because they show a high correlation with results from whole body imaging in cross-sectional and longitudinal analyses. However, the random error of these methods limits the applicability of these substitutes in the assessment of individual cases and together with the systematic error limits the accurate detection of changes in SM. Adverse effects of obesity on muscle quality and function may lead to an underestimation of sarcopenia in obesity and may justify normalization of SM for FM. In conclusion, results for SM can only be compared with reference values using the same method, BIA- or DXA-device and an appropriate reference population. Limitations of proxies for total SM as well as normalization of SM for FM are important content-related issues that need to be considered in longitudinal studies, populations with obesity or older subjects.


2016 ◽  
Vol 121 (5) ◽  
pp. 1047-1052 ◽  
Author(s):  
Cory W. Baumann ◽  
Dongmin Kwak ◽  
Haiming M. Liu ◽  
LaDora V. Thompson

With advancing age, skeletal muscle function declines as a result of strength loss. These strength deficits are largely due to reductions in muscle size (i.e., quantity) and its intrinsic force-producing capacity (i.e., quality). Age-induced reductions in skeletal muscle quantity and quality can be the consequence of several factors, including accumulation of reactive oxygen and nitrogen species (ROS/RNS), also known as oxidative stress. Therefore, the purpose of this mini-review is to highlight the published literature that has demonstrated links between aging, oxidative stress, and skeletal muscle quantity or quality. In particular, we focused on how oxidative stress has the potential to reduce muscle quantity by shifting protein balance in a deficit, and muscle quality by impairing activation at the neuromuscular junction, excitation-contraction (EC) coupling at the ryanodine receptor (RyR), and cross-bridge cycling within the myofibrillar apparatus. Of these, muscle weakness due to EC coupling failure mediated by RyR dysfunction via oxidation and/or nitrosylation appears to be the strongest candidate based on the publications reviewed. However, it is clear that age-associated oxidative stress has the ability to alter strength through several mechanisms and at various locations of the muscle fiber.


2014 ◽  
Vol 15 (4) ◽  
pp. 303.e13-303.e20 ◽  
Author(s):  
Sébastien Barbat-Artigas ◽  
Charlotte H. Pion ◽  
Jean-Philippe Leduc-Gaudet ◽  
Yves Rolland ◽  
Mylène Aubertin-Leheudre

Sign in / Sign up

Export Citation Format

Share Document