scholarly journals Role of Muscle Mass and Muscle Quality in the Association Between Diabetes and Gait Speed

Diabetes Care ◽  
2012 ◽  
Vol 35 (8) ◽  
pp. 1672-1679 ◽  
Author(s):  
S. Volpato ◽  
L. Bianchi ◽  
F. Lauretani ◽  
F. Lauretani ◽  
S. Bandinelli ◽  
...  
2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Thomas Wilkinson ◽  
Eleanor Gore ◽  
Jared Palmer ◽  
Luke Baker ◽  
Emma Watson ◽  
...  

Abstract Background and Aims Individuals living with CKD are characterised by adverse changes in physical function. Knowledge of the factors that mediate impairments in physical functioning is crucial for developing effective interventions that preserve mobility and future independence. Mechanical muscle power describes the rate of performing work and is the product of muscular force and velocity of contraction. Muscle power has been shown to have stronger associations with functional limitations and mortality than sarcopenia in older adults. In CKD, the role of mechanical muscle power is poorly understood and is overlooked as a target in many rehabilitation programmes, often at the expense of muscle mass or strength. The aims of this study were to 1) explore the prevalence of low absolute mechanical power, low relative mechanical power, and low specific mechanical power in CKD; and 2) investigate the association of mechanical power with the ability to complete activities of daily living and physical performance. Method Mechanical muscle power (relative, allometric, specific) was calculated using the sit-to-stand-5 (STS5) test as per previously validated equations. Legs lean mass was derived from regional analyses conducted using bioelectrical impedance analysis (BIA). Physical performance was assessed using two objective tests: usual gait speed and the ‘time-up-and-go’ (TUAG) test. Self-reported activities of daily living (ADLs) were assessed via the Duke Activity Status Index (DASI). Balance and postural stability (postural sway and velocity) was assessed using a FysioMeter. Sex-specific tertiles were used to determine low, medium and high levels of relative STS power and its main components. Results 102 participants with non-dialysis CKD were included (mean age: 62.0 (±14.1) years, n=49 males (48%), mean eGFR: 38.0 (±21.5) ml.min.1.73m2). The mean estimated relative power was 3.1 (±1.5) W.kg in females and 3.3 (±1.3) W.kg in males. Low relative power was found in 35/102 (34%) patients. Relative power was a significant independent predictor of self-reported ADLs (via the DASI) (B=.413, P=.004), and performance on the TUAG (B=-.719, P<.001) and gait speed (B=.404, P=.003) tests. Skeletal muscle mass was not associated with the DASI or any of the objective function tests Conclusion Patients presenting with low muscle power would benefit from participation in appropriate interventions designed to improve the physiological components accounting for low relative muscle power. Assessment of power can be used to tailor renal rehabilitation programmes as shown in Figure 1. Incorporation of power-based training, a novel type of strength training, designed by manipulating traditional strength training variables and primarily movement velocity and training intensity may present the best strategy for improving physical function in CKD.


2014 ◽  
Vol 15 (4) ◽  
pp. 303.e13-303.e20 ◽  
Author(s):  
Sébastien Barbat-Artigas ◽  
Charlotte H. Pion ◽  
Jean-Philippe Leduc-Gaudet ◽  
Yves Rolland ◽  
Mylène Aubertin-Leheudre

2020 ◽  
Vol 9 (5) ◽  
pp. 1580
Author(s):  
Mateu Serra-Prat ◽  
Isabel Lorenzo ◽  
Mònica Papiol ◽  
Elisabet Palomera ◽  
Maria Bartolomé ◽  
...  

Background: In aged populations, muscle strength depends more on muscle quality than on muscle quantity, while all three are criteria for the diagnosis of sarcopenia. Intracellular water content (ICW) in lean mass (LM) has been proposed as an indicator of muscle quality related to muscle strength in older people. Objectives: To evaluate the relationship between the ICW/LM ratio, muscle strength and indicators of functional performance in obese older adults, and to assess the value of the ICW/LM ratio as an indicator of muscle quality. Methodology: Design: cross-sectional study. Population: persons aged 65–75 years with a body mass index of 30–39 kg/m2. ICW and LM were estimated by bioelectrical impedance. Hand grip, gait speed, unipedal stance test, timed up-and-go (TUG) test, Barthel score and frailty (Fried criteria) were assessed. Sarcopenia was established according to EWGSOP2 criteria. Results: Recruited were 305 subjects (66% women), mean age 68 years. The ICW/LM ratio correlated with the TUG test, gait speed and grip strength, and was also associated with sex, the unipedal stance test and frailty. Independently of age, sex and muscle mass, the ICW/LM ratio was related with gait speed, the TUG test and unipedal stance capacity. One person (0.3%) had sarcopenia defined as low muscle strength and low muscle mass, while 25 people (8.2%) had sarcopenia defined as low muscle strength and poor muscle quality (ICW/LM). With this last definition, sarcopenia was related to frailty, gait speed and the TUG test. Conclusions: ICW content in LM could be a useful muscle quality indicator for defining sarcopenia. However, more studies are required to confirm our findings for other populations.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1857 ◽  
Author(s):  
Lorenzo ◽  
Serra-Prat ◽  
Yébenes

Water, the main component of the body, is distributed in the extracellular and intracellular compartments. Water exchange between these compartments is mainly governed by osmotic pressure. Extracellular water osmolarity must remain within very narrow limits to be compatible with life. Older adults lose the thirst sensation and the ability to concentrate urine, and this favours increased extracellular osmolarity (hyperosmotic stress). This situation, in turn, leads to cell dehydration, which has severe consequences for the intracellular protein structure and function and, ultimately, results in cell damage. Moreover, the fact that water determines cell volume may act as a metabolic signal, with cell swelling acting as an anabolic signal and cell shrinkage acting as a catabolic signal. Ageing also leads to a progressive loss in muscle mass and strength. Muscle strength is the main determinant of functional capacity, and, in elderly people, depends more on muscle quality than on muscle quantity (or muscle mass). Intracellular water content in lean mass has been related to muscle strength, functional capacity, and frailty risk, and has been proposed as an indicator of muscle quality and cell hydration. This review aims to assess the role of hyperosmotic stress and cell dehydration on muscle function and frailty.


2017 ◽  
Vol 7 (3) ◽  
pp. 454-462 ◽  
Author(s):  
Akito Tsugawa ◽  
Yusuke Ogawa ◽  
Naoto Takenoshita ◽  
Yoshitsugu Kaneko ◽  
Hirokuni Hatanaka ◽  
...  

Background/Aims: Diabetes-related dementia (DrD), a dementia subgroup associated with specific diabetes mellitus (DM)-related metabolic abnormalities, is clinically and pathophysiologically different from Alzheimer disease (AD) and vascular dementia. We determined whether skeletal muscle strength, quality, and mass decrease in individuals with DrD. Methods: We evaluated grip and knee extension strength, muscle mass, and gait speed in 106 patients with probable AD and without type 2 DM (AD[–DM] group), 74 patients with probable AD and with DM (AD[+DM] group), and 36 patients with DrD (DrD group). Muscle quality was defined as the ratio of muscle strength to muscle mass. Results: Both female and male subjects with DrD showed significantly decreased muscle strength and quality in the upper extremities compared with the subjects with AD[–DM] or AD[+DM]. Female subjects with DrD showed significantly decreased muscle quality in the lower extremities compared with the subjects with AD[–DM]. Both female and male subjects with DrD had a significantly lower gait speed compared with the subjects with AD[–DM]. However, there were no significant differences in muscle mass and the prevalence of sarcopenia between the groups. Conclusion: Subjects with DrD showed decreased muscle strength and quality, but not muscle mass, and had a low gait speed.


2020 ◽  
Author(s):  
Kenneth M Madden ◽  
Boris Feldman ◽  
Shane Arishenkoff ◽  
Graydon S Meneilly

Abstract Background/Objectives Sarcopenia is defined as the gradual age-associated loss of both muscle quantity and strength in older adults, and is associated with increased mortality, falls, fractures and hospitalisations. Current sarcopenia criteria use dual-energy X-ray absorptiometry (DXA) measures of muscle mass, a test that cannot be performed at the bedside, unlike point-of-care ultrasound (PoCUS). We examined the association between ultrasonic measures of muscle thickness (MT, vastus medialis muscle thickness) and measures of muscle quantity and strength in older adults. Methods A total of 150 older adults (age ≥ 65; mean age 80.0 ± 0.5 years, 66 women, 84 men) were recruited sequentially from geriatric medicine clinics. Each subject had lean body mass (LBM, by bioimpedance assay), grip strength, mid-arm biceps circumference (MABC), gait speed and MT measured. All initial models were adjusted for biological sex. Results In our final parsimonious models, MT showed a strong significant correlation with all measures of muscle mass, including LBM (Standardised β = 0.204 ± 0.058, R2 = 0.577, P < 0.001) and MABC (Standardised β = 0.141 ± 0.067, R2 = 0.417, P = 0.038). With respect to measures of muscle quality, there was a strong significant correlation with grip strength (Standardised β = 0.118 ± 0.115, R2 = 0.511, P < 0.001) but not with subject performance (gait speed). Conclusions MT showed strong correlations with both measures of muscle mass (LBM and MABC) and with muscle strength (grip strength). Although more work needs to be done, PoCUS shows potential as a screening tool for sarcopenia in older adults.


2003 ◽  
Vol 95 (4) ◽  
pp. 1717-1727 ◽  
Author(s):  
Timothy J. Doherty

Aging is associated with progressive loss of neuromuscular function that often leads to progressive disability and loss of independence. The term sarcopenia is now commonly used to describe the loss of skeletal muscle mass and strength that occurs in concert with biological aging. By the seventh and eighth decade of life, maximal voluntary contractile strength is decreased, on average, by 20-40% for both men and women in proximal and distal muscles. Although age-associated decreases in strength per unit muscle mass, or muscle quality, may play a role, the majority of strength loss can be accounted for by decreased muscle mass. Multiple factors lead to the development of sarcopenia and the associated impact on function. Loss of skeletal muscle fibers secondary to decreased numbers of motoneurons appears to be a major contributing influence, but other factors, including decreased physical activity, altered hormonal status, decreased total caloric and protein intake, inflammatory mediators, and factors leading to altered protein synthesis, must also be considered. The prevalence of sarcopenia, which may be as high as 30% for those ≥60 yr, will increase as the percentage of the very old continues to grow in our populations. The link between sarcopenia and disability among elderly men and women highlights the need for continued research into the development of the most effective interventions to prevent or at least partially reverse sarcopenia, including the role of resistance exercise and other novel pharmacological and nutritional interventions.


Gerontology ◽  
2021 ◽  
pp. 1-7
Author(s):  
Ha Thi Nga ◽  
Il-Young Jang ◽  
Da Ae Kim ◽  
So Jeong Park ◽  
Jin Young Lee ◽  
...  

Background: Growth differentiation factor 15 (GDF15), induced by tissue inflammation and mitochondrial stress, has received significant attention as a biomarker of mitochondrial dysfunction and has been implicated in various age-related diseases. However, the association between circulating GDF15 and sarcopenia-associated outcomes in older adults remains to be established. Aim: To validate previous experimental data and to investigate the possible role of GDF15 in aging and muscle physiology in humans, this study examined serum GDF15 levels in relation to sarcopenia-related parameters in a cohort of older Asian adults. Methods: Muscle mass and muscle function-related parameters, such as grip strength, gait speed, chair stands, and short physical performance battery score were evaluated by experienced nurses in 125 geriatric participants with or without sarcopenia. Sarcopenia was diagnosed using the Asian-specific cutoff points. Serum GDF15 levels were measured using an enzyme immunoassay kit. Results: Serum GDF15 levels were not significantly different according to sarcopenia status, muscle mass, muscle strength, and physical performance and were not associated with the skeletal muscle index, grip strength, gait speed, time to complete 5 chair stands, and short physical performance battery score, regardless of adjustments for sex, age, and BMI. Conclusions: These findings indicate that the definite role of GDF15 on muscle metabolism observed in animal models might not be evident in humans and that elevated GDF15 levels might not predict the risk for sarcopenia, at least in older Asian adults.


Sign in / Sign up

Export Citation Format

Share Document