Depolarized Mitochondrial Membrane Potential and Protection with Duroquinone in Isolated Perfused Lungs from Rats Exposed to Hyperoxia

Author(s):  
Said H. Audi ◽  
Swetha Ganesh ◽  
Pardis Taheri ◽  
Xiao Zhang ◽  
Ranjan K. Dash ◽  
...  

Dissipation of mitochondrial membrane potential (Δψm) is a hallmark of mitochondrial dysfunction. our objective was to use a previously developed experimental-computational approach to estimate tissue Δψm in intact lungs of rats exposed to hyperoxia, and to evaluate the ability of duroquinone (DQ) to reverse any hyperoxia-induced depolarization of lung Δψm. Rats were exposed to hyperoxia (>95% O2) or normoxia (room air) for 48 hrs, after which lungs were excised and connected to a ventilation-perfusion system. The experimental protocol consisted of measuring the concentration of the fluorescent dye rhodamine 6G (R6G) during three single-pass phases: loading, washing, and uncoupling, in which the lungs were perfused with and without R6G, and with the mitochondrial uncoupler FCCP, respectively. For normoxic lungs, the protocol was repeated with 1) rotenone (complex I inhibitor), 2) rotenone and either DQ or its vehicle (DMSO), and 3) rotenone, glutathione (GSH), and either DQ or DMSO added to the perfusate. Hyperoxic lungs were studied with and without DQ and GSH added to the perfusate. Computational modeling was used to estimate lung Δψm from R6G data. Rat exposure to hyperoxia resulted in partial depolarization (-33 mV) of lung Δψm, and complex I inhibition depolarized lung Δψm by -83 mV. Results also demonstrate the efficacy of DQ to fully reverse both rotenone-induced and hyperoxia-induced lung Δψm depolarization. This study demonstrates hyperoxia-induced Δψm depolarization in intact lungs, and the utility of this approach for assessing the impact of potential therapies such as exogenous quinones that target mitochondria in intact lungs.

2020 ◽  
Vol 128 (4) ◽  
pp. 892-906
Author(s):  
Said H. Audi ◽  
Anthony Cammarata ◽  
Anne V. Clough ◽  
Ranjan K. Dash ◽  
Elizabeth R. Jacobs

Mitochondrial membrane potential (Δψm) plays a key role in vital mitochondrial functions, and its dissipation is a hallmark of mitochondrial dysfunction. The objective of this study was to develop an experimental and computational approach for estimating Δψm in intact rat lungs using the lipophilic fluorescent cationic dye rhodamine 6G (R6G). Rat lungs were excised and connected to a ventilation-perfusion system. The experimental protocol consisted of three single-pass phases, loading, washing, and uncoupling, in which the lungs were perfused with R6G-containing perfusate, fresh R6G-free perfusate, or R6G-free perfusate containing the mitochondrial uncoupler FCCP, respectively. This protocol was carried out with lung perfusate containing verapamil vehicle or verapamil, an inhibitor of the multidrug efflux pump P-glycoprotein (Pgp). Results show that the addition of FCCP resulted in an increase in R6G venous effluent concentration and that this increase was larger in the presence of verapamil than in its absence. A physiologically based pharmacokinetic (PBPK) model for the pulmonary disposition of R6G was developed and used for quantitative interpretation of the kinetic data, including estimating Δψm. The estimated value of Δψm [−144 ± 24 (SD) mV] was not significantly altered by inhibiting Pgp with verapamil and is comparable with that estimated previously in cultured pulmonary endothelial cells. These results demonstrate the utility of the proposed approach for quantifying Δψm in intact functioning lungs. This approach has potential to provide quantitative assessment of the effect of injurious conditions on lung mitochondrial function and to evaluate the impact of therapies that target mitochondria. NEW & NOTEWORTHY A novel experimental and computational approach for estimating mitochondrial membrane potential (Δψm) in intact functioning lungs is presented. The isolated rat lung inlet-outlet concentrations of the fluorescent cationic dye rhodamine 6G were measured and analyzed by using a computational model of its pulmonary disposition to determine Δψm. The approach has the potential to provide quantitative assessment of the effect of injurious conditions and their therapies on lung mitochondrial function.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Toshitaka Yajima ◽  
Stanley Park ◽  
Hanbing Zhou ◽  
Michinari Nakamura ◽  
Mitsuyo Machida ◽  
...  

MAVS is a mitochondrial outer membrane protein that activates innate antiviral signaling by recognizing cytosolic viral RNAs and DNAs. While the discovery of MAVS is the first molecular evidence that links mitochondria to innate immune mechanisms, it is still unclear whether MAVS affects mitochondrial cell death as a member of caspase activation and recruitment domain (CARD)-containing proteins. We found that MAVS interacts with Bax through CARD by Yeast two-hybrid and a series of immunoprecipitation (IP) assay, which led us to hypothesize that MAVS functions not only in the innate antiviral mechanisms but also in the mitochondrial cell death pathway. Methods: 1) We examined molecular interaction between MAVS and Bax under oxidative stress by IP using isolated myocytes with H2O2 stimulation and the heart post ischemia-reperfusion (I/R). 2) We evaluated the effect of MAVS on mitochondrial membrane potential and apoptosis under H2O2 stimulation using isolated myocytes with adenoviral MAVS knockdown. 3) We investigated the impact of MAVS on %myocardial infarction (%MI) post I/R using cardiac-specific MAVS knockout (cKO) and transgenic (cTg) mice which we have originally generated. 4) We examined the effect of MAVS on recombinant Bax (rBax)-mediated cytochrome c release using isolated mitochondria from wild type (WT) and MAVS KO mice. Results: 1) The amount of Bax pulled down with MAVS was significantly increased in isolated myocytes with 0.2 mM H2O2 compared to those without stimulation (mean±SD; 1.808±0.14, n=5, p<0.001) and in the heart post I/R compared to sham (2.2±1.19, n=3, p=0.0081). 2) Myocytes with MAVS knockdown showed clear abnormalities in mitochondrial membrane potential and caspace-3 cleavage with 0.2 mM H2O2 compared to control cardiomyocytes. 3) MAVS cKO had significantly larger %MI than WT (81.9 ± 5.8% vs. 42.6 ± 13.6%, n=8, p=0.0008). In contrast, MAVS cTg had significantly smaller %MI that WT (30.0 ± 4.8% vs. 49.2 ± 4.8%, n=10, p=0.0113). 4) Mitochondria from MAVS KO exhibited cytochrome c release after incubation with 2.5 μ g of rBax while those from WT required 10 μ g of rBax. Conclusion: These results demonstrate that MAVS protects cardiomyocyte under oxidative stress by interfering with Bax-mediated cytochrome c release from mitochondria.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Pamela Harding ◽  
Timothy D Bryson ◽  
Indrani Datta ◽  
Yun Wang ◽  
Albert Levin

Hypertension is a leading cause of heart failure and both conditions are characterized by increased prostaglandin E2 (PGE2) which signals through 4 receptor subtypes (EP1-EP4) to elicit diverse physiologic effects. We previously reported that cardiomyocyte-specific deletion of the EP4 receptor results in a phenotype of dilated cardiomyopathy in male mice that is characterized by reduced ejection fraction. Subsequent gene array on left ventricles from these mice, coupled with Ingenuity Pathway Analysis (IPA) demonstrated that genes differentiating WT mice and EP4 KO mice with low ejection fraction were significantly overrepresented in mitochondrial (p=2.51x10 -28 ) and oxidative phosphorylation (p=3.16 x10 -30 ) pathways. We therefore hypothesized that PGE2 could reduce mitochondrial function. To test this hypothesis, we used isolated mouse cardiomyocytes (AVM) from 16-18 week old male C57Bl/6 mice and treated them with 1 μM PGE2 for various times. Mitochondrial gene expression was examined using a RT-profiler kit for mitochondrial energy metabolism, complex I activity with a spectrophotometric assay, ATP levels with a bioluminescence assay and mitochondrial membrane potential using JC-1 staining. Treatment of AVM with PGE2 for 4 hrs reduced expression of multiple genes from mitochondrial pathways including sub units of mitochondrial NADH dehydrogenase ubiquinone flavoprotein (Nduf), a component of complex I. In accord with the mRNA data, Complex I activity was reduced by 50% (p < 0.05) by 4 hr treatment with PGE2, from 1.32 ± 0.36 to 0.66 ± 0.08 mOD/min. Cytochrome c oxidase subunit 8 (Cox8c) mRNA was also reduced from a control value of 1.00 to -1.75 ± 0.20 (p < 0.005) after PGE2 treatment. Immuno-fluorescence showed that JC-1 aggregates were reduced after 1 or 3 hr treatment with either 1 μM PGE2 or the EP3 agonist, sulprostone, suggesting reduced mitochondrial membrane potential. Subsequent experiments also showed that ATP levels were reduced 16% from 11.18 ± 0.71 nmol to 9.39 ± 0.83 nmol after treatment with sulprostone for only 1 hr. Taken together, these results suggest that increased PGE2 in hypertension may contribute to impaired mitochondrial function and provide yet another link between inflammation and cardiac dysfunction.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1356-1356
Author(s):  
Wenli Liu ◽  
Yueqin Liu ◽  
Ruihong Wang ◽  
Cuiling Li ◽  
Chuxia Deng ◽  
...  

Abstract Abstract 1356 Poster Board I-378 Introduction Olfactomedin 4 (OLFM4), also called hGC-1, GW112 and pDP4, was first identified and specifically expressed in hematopoietic myeloid cells. OLFM4 expression in myeloid cells is regulated by transcription factors, PU1 and NF-κB. It has significant homology in its C-terminal domain with other olfactomedin-related proteins. OLFM4 encodes a 510 amino acid N-linked glycoprotein. The exact biological function of OLFM4, especially in neutrophils, is currently undefined. To characterize the in vivo function of OLFM4, we generated OLFM4 deficient mice (OLFM4-/-) and investigated its potential role in neutrophil functioins. Results 1) In this study, we showed that OLFM4 is a secreted glycoprotein and is also localized in the mitochondria, cytoplasm and cell membrane fractions of neutrophils. We demonstrated that OLFM4 interacts with GRIM-19 (Genes associated with Retinoid-IFN-induced Mortality-19), an apoptosis related protein, in the neutrophil mitochondria using co-immuoprecipitation assay. GRIM-19 is a subunit of complex I of mitochondrial respiratory chain and is essential for maintenance of mitochondrial membrane potential. Our result suggests that OLFM4 appears to be a novel component of complex I of mitochondrial respiratory chain and may be involved in regulation of mitochondrial membrane potential. 2) Mice heterozygous (OLFM4+/-) and homozygous (OLFM4-/-) for the null mutation in OLFM4 appeared to have normal development, fertility, and viability relative to wild-type (WT) mice. Whole blood analysis, differential leukocyte counts, blood chemistry and bone marrow smears were normal in OLFM4-/- mice, suggesting that OLFM4 is not essential for normal development and hematopoiesis in mice. 3) In response to LPS, fMLP and E.coli bacteria challenge, neutrophils from OLFM4-/- mice showed significantly reduced superoxide (O2−) and hydrogen peroxide (H2O2) production compared with WT mice. These results suggest that OLFM4 is an essential component to mediate O2− and H2O2 production in the neutrophil mitochondria under inflammation stimuli. 4) Exogenous H2O2 induced neutrophil apoptosis in a time and dose dependent manner in WT mice, but this induction of apoptosis was significantly reduced in OLFM4-/- mice. This result suggests that OLFM4 sensitizes and mediates H2O2-induced apoptosis in neutrophils. 5) Furthermore, we demonstrated that H2O2-stimulated mitochondrial membrane permeability reduction and caspase-3 and caspase-9 activation were inhibited in the neutrophils of OLFM4-/- mice. This result confirmed our hypothesis that OLFM4 may be involved in maintenance of mitochondrial membrane potential and suggests that OLFM4 may have opposite role as GRIM-19. 6) Moreover, Bax association with mitochondria and the cytoplasmic translocation of Omi/HtrA2 and Smac/DIABLO in response to H2O2 were inhibited in the neutrophils of OLFM4-/- mice. Conclusion Our results suggest: 1) OLFM4 has multiple subcellular localizations including mitochondria, cytoplasm, and cell membrane in neutrophils. The interaction of OLFM4 with GRIM-19 in the mitochondria suggests that OLFM4 is novel component of complex I of mitochondrial respiratory chain in the mitochondria of neutrophils, 2) OLFM4 is a novel mitochondrial molecule that is essential for O2− and H2O2 production in the neutrophils in the presence of inflammation stimuli, 3) Loss of OLFM4 in neutrophils does not trigger spontaneous apoptosis. However, OLFM4 sensitizes oxidative stress-induced apoptosis in mouse neutrophils. OLFM4 is involved in the regulation of mitochondria membrane potential and sensitizes cytoplasmic translocation of Omi/HtrA2 and Smac/DIABLO and caspases-3 and caspase-9 mediated apoptosis in the presence of oxidative stress. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Said H. Audi ◽  
Anthony Cammarata ◽  
Anne V. Clough ◽  
Ranjan K. Dash ◽  
Elizabeth R. Jacobs

2019 ◽  
Vol 20 (3) ◽  
pp. 650 ◽  
Author(s):  
Sławomir Jaworski ◽  
Barbara Strojny ◽  
Ewa Sawosz ◽  
Mateusz Wierzbicki ◽  
Marta Grodzik ◽  
...  

Due to the development of nanotechnologies, graphene and graphene-based nanomaterials have attracted immense scientific interest owing to their extraordinary properties. Graphene can be used in many fields, including biomedicine. To date, little is known about the impact graphene may have on human health in the case of intentional exposure. The present study was carried out on U87 glioma cells and non-cancer HS-5 cell lines as in vitro model and U87 tumors cultured on chicken embryo chorioallantoic membrane as in vivo model, on which the effects of pristine graphene platelets (GPs) were evaluated. The investigation consisted of structural analysis of GPs using transmission electron microscopy, Fourier transmission infrared measurements, zeta potential measurements, evaluation of cell morphology, assessment of cell viability, investigation of reactive oxygen species production, and investigation of mitochondrial membrane potential. The toxicity of U87 glioma tumors was evaluated by calculating the weight and volume of tumors and performing analyses of the ultrastructure, histology, and protein expression. The in vitro results indicate that GPs have dose-dependent cytotoxicity via ROS overproduction and depletion of the mitochondrial membrane potential. The mass and volume of tumors were reduced in vivo after injection of GPs. Additionally, the level of apoptotic and necrotic markers increased in GPs-treated tumors.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 427 ◽  
Author(s):  
Aleksandra Szwed ◽  
Katarzyna Miłowska ◽  
Sylwia Michlewska ◽  
Silvia Moreno ◽  
Dzmitry Shcharbin ◽  
...  

Dendrimers as drug carriers can be utilized for drugs and siRNA delivery in central nervous system (CNS) disorders, including various types of cancers, such as neuroblastomas and gliomas. They have also been considered as drugs per se, for example as anti-Alzheimer’s disease (AD), anti-cancer, anti-prion or anti-inflammatory agents. Since the influence of carbosilane–viologen–phosphorus dendrimers (SMT1 and SMT2) on the basic cellular processes of nerve cells had not been investigated, we examined the impact of two generations of these hybrid macromolecules on two murine cell lines—cancer cell line N2a (mouse neuroblastoma) and normal immortalized cell line mHippoE-18 (embryonic mouse hippocampal cell line). We examined alterations in cellular responses including the activity of mitochondrial dehydrogenases, the generation of reactive oxygen species (ROS), changes in mitochondrial membrane potential, and morphological modifications and fractions of apoptotic and dead cells. Our results show that both dendrimers at low concentrations affected the cancer cell line more than the normal one. Also, generation-dependent effects were found: the highest generation induced greater cytotoxic effects and morphological modifications. The most promising is that the changes in mitochondrial membrane potential and transmission electron microscopy (TEM) images indicate that dendrimer SMT1 can reach mitochondria. Thus, SMT1 and SMT2 seem to have potential as nanocarriers to mitochondria or anti-cancer drugs per se in CNS disorders.


2021 ◽  
Author(s):  
Chunyan Liu ◽  
Shilong Zhang ◽  
Dechao Zhu ◽  
Dengying Fan ◽  
Yahui Zhu ◽  
...  

Abstract Background: To examine the morphology and function of mitochondria from the genioglossus in a rabbit model of obstructive sleep apnea-hypopnea syndrome (OSAHS), as well as these factors after insertion of a mandibular advancement device (MAD). Methods: Thirty male New Zealand white rabbits were randomized into three groups: control, OSAHS and MAD, with 10 rabbits in each group. Animals in Group OSAHS and Group MAD were induced to develop OSAHS by injection of gel into the submucosal muscular layer of the soft palate. The rabbits in Group MAD were fitted with a MAD. The animals in the control group were not treated. Further, polysomnography (PSG) and CBCT scan were used to measure MAD effectiveness. CBCT of the upper airway and PSG suggested that MAD was effective. Rabbits in the three groups were induced to sleep for 4–6 hours per day for 8 consecutive weeks. The genioglossus was harvested and detected by optical microscopy and transmission electron microscopy. The mitochondrial membrane potential was determined by laser confocal microscopy and flow cytometry. Mitochondrial complex I and IV activities were detected by mitochondrial complex assay kits.Results: OSAHS-like symptoms were induced successfully in Group OSAHS and rescued by MAD treatment. The relative values of the mitochondrial membrane potential, mitochondrial complex I activity and complex IV activity were significantly lower in Group OSAHS than in the control group; however, there was no significant difference between Group MAD and the control group. The OSAHS-induced injury and the dysfunctional mitochondria of the genioglossus muscle were reduced by MAD treatment.Conclusion: Damaged mitochondrial structure and function were induced by OSAHS and could be attenuated by MAD treatment.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Matthew A Walker ◽  
Rong Tian

The mitochondria rely heavily on the ratio between NAD+ and its reduced form NADH to maintain proper function and generate 95% of cardiac cellular energy. Sirtuin 3 (SIRT3) is the major mitochondrial deacetylase and its activity level has been linked to the NAD+/NADH ratio. Numerous studies have shown that deletion of SIRT3 results in hyperacetylation and impairment of mitochondrial enzymes involved in fatty acid metabolism and in the mitochondrial respiratory chain. Because impairments in these processes have shown to be associated with decreases in the NAD+/NADH ratio and contribute to deficits in energy production, we hypothesized that the SIRT3 knockout mice (SIRT3 -/- ) would have a decreased NAD+/NADH ratio and that normalizing the ratio would improve mitochondrial respiratory function and inner membrane potential. In the present study, we observed increases in both NAD+ (1.1-fold, n=3, p<0.05) and NADH (1.5-fold) in cardiac tissue from 14-week old SIRT3 -/- mice compared to wild-type (WT) controls, resulting in a 26±2.2% reduction in the NAD+/NADH ratio. These changes correlated with decreased Complex I ADP stimulated respiration (173±16 vs 118±14 nmolO 2 /min/mg for WT and SIRT3 -/- , respectively, n=3, p<0.05) and suppressed mitochondrial membrane potential. Intraperitoneal injection (I.P.) of Nicotinamide Riboside (NR) increased NAD+ levels in cardiac tissue lysates (WT 1.5-fold and SIRT3 -/- 1.4-fold, n=5, p<0.05) and in mitochondria isolated (WT 1.9-fold and SIRT3 -/- 1.7-fold) from the mice with no significant changes in NADH levels. Therefore, the NR I.P. injections normalized the NAD+/NADH ratio, partially restored the Complex I supported mitochondrial respiration (123±11 vs 157±8 nmolO 2 /min/mg for vehicle and NR treated SIRT3 -/- mice, respectively, n=3, p<0.05), and improved mitochondrial membrane potential in the SIRT3 -/- mice. These results suggest that increasing cardiac NAD+ levels can rescue mitochondrial dysfunction independent of SIRT3 protein deacetylation and warrants further investigation. The next step will be to test whether increasing cardiac NAD+ levels can improve mitochondrial function and reduce injury in SIRT3 -/- mice subjected to chronic heart stress induced by transverse aortic constriction surgery.


Sign in / Sign up

Export Citation Format

Share Document