scholarly journals Combined heat and mental stress alters neurovascular control in humans

2010 ◽  
Vol 109 (6) ◽  
pp. 1880-1886 ◽  
Author(s):  
Jenna C. Klein ◽  
Craig G. Crandall ◽  
R. Matthew Brothers ◽  
Jason R. Carter

This study examined the effect of combined heat and mental stress on neurovascular control. We hypothesized that muscle sympathetic nerve activity (MSNA) and forearm vascular responses to mental stress would be augmented during heat stress. Thirteen subjects performed 5 min of mental stress during normothermia (Tcore; 37 ± 0°C) and heat stress (38 ± 0°C). Heart rate, mean arterial pressure (MAP), MSNA, forearm vascular conductance (FVC; venous occlusion plethysmography), and forearm skin vascular conductance (SkVCf; via laser-Doppler) were analyzed. Heat stress increased heart rate, MSNA, SkVCf, and FVC at rest but did not change MAP. Mental stress increased MSNA and MAP during both thermal conditions; however, the increase in MAP during heat stress was blunted, whereas the increase in MSNA was accentuated, compared with normothermia (time × condition; P < 0.05 for both). Mental stress decreased SkVCf during heat stress but not during normothermia (time × condition, P < 0.01). Mental stress elicited similar increases in heart rate and FVC during both conditions. In one subject combined heat and mental stress induced presyncope coupled with atypical blood pressure and cutaneous vascular responses. In conclusion, these findings indicate that mental stress elicits a blunted increase of MAP during heat stress, despite greater increases in total MSNA and cutaneous vasoconstriction. The neurovascular responses to combined heat and mental stress may be clinically relevant to individuals frequently exposed to mentally demanding tasks in hyperthermic environmental conditions (i.e., soldiers, firefighters, and athletes).

2011 ◽  
Vol 110 (1) ◽  
pp. 76-82 ◽  
Author(s):  
Christopher E. Schwartz ◽  
John J. Durocher ◽  
Jason R. Carter

Neurovascular responses to mental stress have been linked to several cardiovascular diseases, including hypertension. Mean arterial pressure (MAP), muscle sympathetic nerve activity (MSNA), and forearm vascular responses to mental stress are well documented in normotensive (NT) subjects, but responses in prehypertensive (PHT) subjects remain unclear. We tested the hypothesis that PHT would elicit a more dramatic increase of MAP during mental stress via augmented MSNA and blunted forearm vascular conductance (FVC). We examined 17 PHT (systolic 120–139 and/or diastolic 80–89 mmHg; 22 ± 1 yr) and 18 NT (systolic < 120 and diastolic < 80 mmHg; 23 ± 2 yr) subjects. Heart rate, MAP, MSNA, FVC, and calf vascular conductance were measured during 5 min of baseline and 5 min of mental stress (mental arithmetic). Mental stress increased MAP and FVC in both groups, but the increases in MAP were augmented (Δ 10 ± 1 vs. Δ14 ± 1 mmHg; P < 0.05), and the increases in FVC were blunted (Δ95 ± 14 vs. Δ37 ± 8%; P < 0.001) in PHT subjects. Mental stress elicited similar increases in MSNA (Δ7 ± 2 vs. Δ6 ± 2 bursts/min), heart rate (Δ21 ± 3 vs. Δ18 ± 3 beats/min), and calf vascular conductance (Δ29 ± 10 vs. Δ19 ± 5%) in NT and PHT subjects, respectively. In conclusion, mental stress elicits an augmented pressor response in PHT subjects. This augmentation appears to be associated with altered forearm vascular, but not MSNA, responses to mental stress.


2010 ◽  
Vol 298 (1) ◽  
pp. H229-H234 ◽  
Author(s):  
Chester A. Ray ◽  
Jason R. Carter

The effects of aerobic exercise training (ET) on muscle sympathetic nerve activity (MSNA) and renal vascular responses to mental stress (MS) have not been determined in humans. We hypothesized that aerobic ET would reduce MSNA and renal vasoconstriction during MS. MSNA, mean arterial pressure (MAP), heart rate, renal blood flow velocity (RBFV), and peak oxygen uptake (V̇o2 peak) were recorded in 23 healthy adults. Fourteen subjects participated in 8 wk of aerobic ET, while nine subjects served as sedentary controls (Con). ET significantly increased V̇o2 peak (Δ18 ± 1%; P < 0.001) and decreased RBFV at rest (60 ± 4 to 48 ± 3 cm/s; P < 0.01), whereas Con did not alter V̇o2 peak or RBFV. ET did not alter resting MSNA (11 ± 1 to 9 ± 1 bursts/min) or MAP (84 ± 2 to 83 ± 2 mmHg), and these findings were similar in the Con group. MS elicited similar increases in MSNA (∼Δ2 bursts/min; P < 0.05), MAP (∼Δ15 mmHg; P < 0.001), and heart rate (∼Δ20 beats/min; P < 0.001) before and after ET, and the responses were not different between ET and Con. Likewise, MS elicited similar decreases in RBFV and renal vascular conductance before and after ET, and the responses were not different between ET and Con. Perceived stress levels during MS were similar before and after the 8-wk study in both ET and Con. In conclusion, ET does not alter MSNA and renal vascular responses to MS in healthy humans.


2010 ◽  
Vol 108 (6) ◽  
pp. 1591-1594 ◽  
Author(s):  
Scott L. Davis ◽  
Craig G. Crandall

The Valsalva maneuver can be used as a noninvasive index of autonomic control of blood pressure and heart rate. The purpose of this investigation was to test the hypothesis that sympathetic mediated vasoconstriction, as referenced by hemodynamic responses during late phase II (phase IIb) of the Valsalva maneuver, is inhibited during whole body heating. Seven individuals (5 men, 2 women) performed three Valsalva maneuvers (each at a 30-mmHg expiratory pressure for 15 s) during normothermia and again during whole body heating (increase sublingual temperature ∼0.8°C via water-perfused suit). Each Valsalva maneuver was separated by a minimum of 5 min. Beat-to-beat mean arterial blood pressure (MAP) and heart rate were measured during each Valsalva maneuver, and responses for each phase were averaged across the three Valsalva maneuvers for both thermal conditions. Baseline MAP was not significantly different between normothermic (88 ± 11 mmHg) and heat stress (84 ± 9 mmHg) conditions. The change in MAP (ΔMAP) relative to pre-Valsalva MAP during phases IIa and IIb was significantly lower during heat stress (IIa = −20 ± 8 mmHg; IIb = −13 ± 7 mmHg) compared with normothermia (IIa = −1 ± 15 mmHg; IIb = 3 ± 13 mmHg). ΔMAP from pre-Valsalva baseline during phase IV was significantly higher during heat stress (25 ± 10 mmHg) compared with normothermia (8 ± 9 mmHg). Counter to the proposed hypothesis, the increase in MAP from the end of phase IIa to the end of phase IIb during heat stress was not attenuated. Conversely, this increase in MAP tended to be greater during heat stress relative to normothermia ( P = 0.06), suggesting that sympathetic activation may be elevated during this phase of the Valsalva while heat stressed. These data show that heat stress does not attenuate this index of vasoconstrictor responsiveness during the Valsalva maneuver.


2001 ◽  
Vol 280 (5) ◽  
pp. R1462-R1468 ◽  
Author(s):  
Holly R. Middlekauff ◽  
Jun Liang Yu ◽  
Kakit Hui

In animal studies, acupuncture has been shown to be sympathoinhibitory, but it is unknown if acupuncture is sympathoinhibitory in humans. Nineteen healthy volunteers underwent mental stress testing pre- and postacupuncture. Muscle sympathetic nerve activity (MSNA), blood pressure, and heart rate during mental stress were compared pre- and postacupuncture. Control acupuncture consisted of acupuncture at nonacupoints and “no-needle” acupuncture. Acupuncture had no effect on resting MSNA, blood pressure, or heart rate. After real acupuncture, the increase in mean arterial pressure (pre- vs. postacupuncture 4.5 vs. 1.7 mmHg, P < 0.001), but not MSNA or heart rate, was blunted during mental stress. Similarly, following nonacupoint acupuncture, the increase in mean arterial pressure was blunted during mental stress (5.4 vs. 2.9 mmHg, P < 0.0003). No-needle acupuncture had no effect on these variables. In conclusion, acupuncture at traditional acupoints, nonacupoints, and no-needle acupuncture does not modulate baseline MSNA or MSNA responses to mental stress in normal humans. Acupuncture significantly attenuates the increase in blood pressure during mental stress. Needling nonacupoints, but not “no-needle” acupuncture, have a similar effect on blood pressure.


1997 ◽  
Vol 272 (4) ◽  
pp. H1780-H1784 ◽  
Author(s):  
T. L. Shortt ◽  
C. A. Ray

Animal studies have demonstrated increases in sympathetic nerve outflow with vestibular stimulation. The purpose of the present study was to determine whether vestibulosympathetic reflexes are engaged in humans. Muscle sympathetic nerve activity (MSNA), heart rate, arterial pressure, calf blood flow (CBF), and calculated calf vascular resistance (CVR; mean arterial pressure/CBF) were determined during 10 min of baseline (laying prone with chin supported) and 10 min of head-down neck flexion (HDNF). MSNA responses were measured in nine subjects, and calf vascular responses were determined in seven of these subjects. Heart rate increased during the first minute of HDNF (71 +/- 2 to 76 +/- 3 beats/min; P < 0.05) and remained slightly elevated (71 +/- 2 to 74 +/- 3 beats/min; P < 0.05) for the duration of HDNF. Diastolic and mean arterial pressures also increased slightly with HDNF (80 +/- 3 to 82 +/- 3 and 96 +/- 3 to 98 +/- 3 mmHg, respectively; P < 0.05). Systolic arterial pressure did not change significantly during HDNF. CBF decreased 14% (4.63 +/- 0.78 to 3.97 +/- 0.60 ml x min(-1) x 100 ml(-1); P < 0.05), and CVR increased 12% (24.0 +/- 4.3 to 27.4 +/- 4.7 units; P < 0.05) during HDNF. These changes corresponded with significant increases in MSNA during HDNF. MSNA, expressed as burst frequency, increased from 14 +/- 2 to 20 +/- 2 bursts/min (P < 0.05) and increased 63 +/- 23% (P < 0.05) when expressed as the percent change in total activity. All variables returned to baseline during recovery. Thoracic impedance measured in five subjects did not change during HDNF (19.6 +/- 1.2 to 19.7 +/- 1.5 omega), suggesting no major change in central blood volume. The results indicate that HDNF elicits increases in CVR that are mediated by the augmentation of MSNA. Arterial pressure responses and thoracic impedance data suggest that high and low pressure baroreflexes were not the mechanism for sympathetic activation. The immediate increase in MSNA with HDNF suggests a role for vestibulosympathetic reflexes.


2014 ◽  
Vol 307 (7) ◽  
pp. R908-R913 ◽  
Author(s):  
Daniel Gagnon ◽  
R. Matthew Brothers ◽  
Matthew S. Ganio ◽  
Jeffrey L. Hastings ◽  
Craig G. Crandall

Facial pallor is commonly observed at presyncope in humans, suggestive of reductions in facial skin blood flow (SkBF). Yet, cutaneous vasoconstriction is usually minimal at presyncope when measured at the forearm. We tested the hypothesis that reductions in forehead SkBF at presyncope are greater than in the forearm. Forehead and forearm SkBF (laser-Doppler) and blood pressure (Finometer or radial artery catheterization) were measured during lower body negative pressure (LBNP) to presyncope in 11 normothermic and 13 heat-stressed subjects (intestinal temperature increased ∼1.4°C). LBNP reduced mean arterial pressure from 91 ± 5 to 57 ± 7 mmHg during normothermia ( P ≤ 0.001) and from 82 ± 5 to 57 ± 7 mmHg during heat stress ( P ≤ 0.001). During normothermia, LBNP decreased forehead SkBF 55 ± 14% compared with 24 ± 11% at the forearm ( P = 0.002), while during heat stress LBNP decreased forehead SkBF 39 ± 11% compared with 28 ± 8% in the forearm ( P = 0.007). In both conditions, most (≥68%) of the decreases in SkBF were due to decreases in blood pressure. However, a greater contribution of actively mediated reductions in SkBF was observed at the forehead, relative to the forearm during normothermia (32 ± 13% vs. 11 ± 11%, P = 0.031) and heat stress (30 ± 13% vs. 10 ± 13%, P = 0.004). These data suggest that facial pallor at presyncope is due to a combination of passive decreases in forehead SkBF secondary to reductions in blood pressure and to active decreases in SkBF, the latter of which are relatively greater than in the forearm.


2009 ◽  
Vol 106 (4) ◽  
pp. 1125-1131 ◽  
Author(s):  
Jian Cui ◽  
Manabu Shibasaki ◽  
Scott L. Davis ◽  
David A. Low ◽  
David M. Keller ◽  
...  

Both whole body heat stress and stimulation of muscle metabolic receptors activate muscle sympathetic nerve activity (MSNA) through nonbaroreflex pathways. In addition to stimulating muscle metaboreceptors, exercise has the potential to increase internal temperature. Although we and others report that passive whole body heating does not alter the gain of the arterial baroreflex, it is unknown whether increased body temperature, often accompanying exercise, affects baroreflex function when muscle metaboreceptors are stimulated. This project tested the hypothesis that whole body heating alters the gain of baroreflex control of muscle sympathetic nerve activity (MSNA) and heart rate during muscle metaboreceptor stimulation engaged via postexercise muscle ischemia (PEMI). MSNA, blood pressure (BP, Finometer), and heart rate were recorded from 11 healthy volunteers. The volunteers performed isometric handgrip exercise until fatigue, followed by 2.5 min of PEMI. During PEMI, BP was acutely reduced and then raised pharmacologically using the modified Oxford technique. This protocol was repeated two to three times when volunteers were normothermic, and again during heat stress (increase core temperature ∼ 0.7°C) conditions. The slope of the relationship between MSNA and BP during PEMI was less negative (i.e., decreased baroreflex gain) during whole body heating when compared with the normothermic condition (−4.34 ± 0.40 to −3.57 ± 0.31 units·beat−1·mmHg−1, respectively; P = 0.015). The gain of baroreflex control of heart rate during PEMI was also decreased during whole body heating ( P < 0.001). These findings indicate that whole body heat stress reduces baroreflex control of MSNA and heart rate during muscle metaboreceptor stimulation.


1996 ◽  
Vol 8 (3) ◽  
pp. 365 ◽  
Author(s):  
BC Galland ◽  
NS Wehner ◽  
DP Bolton ◽  
BJ Taylor

Most experimental studies of arousal to respiratory stressors have been performed under neutral thermal conditions. The present study focussed on arousal responses with the added challenge of heat stress. The subjects were two groups of 10 sedated piglets aged 4-6 days and 2-6 days respectively. Respiratory stimuli (partial and total airways obstruction (AO) or rebreathing (RB) expired gases) were applied during non-rapid-eye-movement (NREM) sleep. Measurements of heart rate, SaO2, intra-pleural pressure or inspired CO2 and O2 were recorded during tests in normothermia and hyperthermia. Hyperthermia significantly shortened the time to arousal. Thus, arousal times from partial and total AO and from RB were: in normothermia, 40.3 +/- 5.8, 9.2 +/- 0.7 and 94.9 +/- 14.7 s respectively; in hyperthermia, 17.8 +/- 3.7, 7.6 +/- 0.9 and 68.5 +/- 9.1 s respectively. Cardio-respiratory variables at arousal were similar in both thermal states. Seven non-sedated piglets were challenged with RB stimuli during normothermia only to determine the influence of sleep state on arousal. Arousal in REM sleep was delayed approximately 2-3-fold (NREM, 41.2 +/- 8.2 s; REM, 88.5 +/- 18.1 s), occurring at a lower SaO2 and higher inspired CO2. It is concluded that arousal from NREM sleep under adverse conditions of hyperthermia shortens the arousal time from asphyxial stimuli induced by AO and RB with no change in the arousal threshold.


2016 ◽  
Vol 41 (8) ◽  
pp. 879-887 ◽  
Author(s):  
Nicole E. Moyen ◽  
Jenna M. Burchfield ◽  
Cory L. Butts ◽  
Jordan M. Glenn ◽  
Matthew A. Tucker ◽  
...  

The purpose of this study was to evaluate the effect of obesity and mild hypohydration on local sweating (LSR) and cutaneous vascular conductance (CVC) responses during passive heat stress in females. Thirteen obese (age, 24 ± 4 years; 45.4% ± 5.2% body fat) and 12 nonobese (age, 22 ± 2 years; 25.1% ± 3.9% body fat) females were passively heated (1.0 °C rectal temperature increase) while either euhydrated (EUHY) or mildly hypohydrated (HYPO; via fluid restriction). Chest and forearm LSR (ventilated capsule) and CVC (Laser Doppler flowmetry) onset, sensitivity, and plateau/steady state were recorded as mean body temperature increased (ΔTb). Participants began trials EUHY (urine specific gravity, Usg = 1.009 ± 0.006) or HYPO (Usg = 1.025 ± 0.004; p < 0.05), and remained EUHY or HYPO. Independent of obesity, HYPO decreased sweat sensitivity at the chest (HYPO = 0.79 ± 0.35, EUHY = 0.95 ± 0.39 Δmg·min−1·cm−2/°C ΔTb) and forearm (HYPO = 0.82 ± 0.39, EUHY = 1.06 ± 0.34 Δmg·min−1·cm−2/°C ΔTb); forearm LSR plateau was also decreased (HYPO = 0.66 ± 0.19, EUHY = 0.78 ± 0.23 mg·min−1·cm−2; all p < 0.05). Overall, obese females had lower chest-sweat sensitivity (0.72 ± 0.35 vs. 1.01 ± 0.33 Δmg·min−1·cm−2/°C ΔTb) and plateau (0.55 ± 0.27 vs. 0.80 ± 0.25 mg·min−1·cm−2; p < 0.05). While hypohydrated, obese females had a lower chest LSR (p < 0.05) versus nonobese females midway (0.45 ± 0.26 vs. 0.73 ± 0.23 mg·min−1·cm−2) and at the end (0.53 ± 0.27 vs. 0.81 ± 0.24 mg·min−1·cm−2) of heating. Furthermore, HYPO (relative to the EUHY trials) led to a greater decrease in CVC sensitivity in obese (–28 ± 27 Δ% maximal CVC/°C ΔTb) versus nonobese females (+9.2 ± 33 Δ% maximal CVC/°C ΔTb; p < 0.05). In conclusion, mild hypohydration impairs females’ sweating responses during passive heat stress, and this effect is exacerbated when obese.


2003 ◽  
Vol 94 (3) ◽  
pp. 1045-1053 ◽  
Author(s):  
Jane M. Pierzga ◽  
Adam Frymoyer ◽  
W. Larry Kenney

Reflex vasodilation is attenuated in aged skin during hyperthermia. We used laser-Doppler imaging (LDI) to test the hypothesis that the magnitude of conductance and the spatial distribution of vasodilation are altered with aging. LDI of forearm skin was compared in 12 young (19- to 29-yr-old) and 12 older (64- to 75-yr-old) men during supine passive heating. Additionally, iontophoresis of bretylium tosylate was performed in a subset of subjects to explore the involvement of sympathetic vasoconstriction in limiting skin blood flow. Passive heating with water-perfused suits clamped mean skin temperature at 41.0 ± 0.5°C, causing a ramp increase in esophageal temperature (Tes) to ≤38.5°C. LDI scans were performed at baseline and at every 0.2°C increase in Tes. LDI at bretylium and control sites was identical, suggesting no influence of noradrenergic vasoconstriction. Forearm vascular conductance (venous occlusion plethysmography) was reduced in the older men ( P ≤ 0.001) at every elevated Tes. Mean cutaneous vascular conductance (CVC) of the scanned area was reduced in the older men at 0.2°C ≤ ΔTes ≤ 0.8°C. Early in heating (0.2°C ≤ ΔTes ≤ 0.6°C), older men also responded with a reduced vasodilated area ( P ≤ 0.05), implying a slower recruitment or filling of skin microvessels. The results indicate that the area of vasodilation and CVC within the vasodilated area are reduced in aged skin during early passive heating, but only CVC is reduced at ΔTes = 0.8°C.


Sign in / Sign up

Export Citation Format

Share Document