scholarly journals Resistance exercise alters MRF and IGF-I mRNA content in human skeletal muscle

2003 ◽  
Vol 95 (3) ◽  
pp. 1038-1044 ◽  
Author(s):  
Niklas Psilander ◽  
Rasmus Damsgaard ◽  
Henriette Pilegaard

Increasing evidence suggests that the myogenic regulatory factors (MRFs) and IGF-I have important roles in the hypertrophy response observed after mechanical loading. We, therefore, hypothesized that a bout of heavy-resistance training would affect the MRF and IGF-I mRNA levels in human skeletal muscle. Six male subjects completed four sets of 6-12 repetitions on a leg press and knee extensor machine separated by 3 min. Myogenin, MRF4, MyoD, IGF-IEabc (isoforms a, b, and c) and IGF-IEbc (isoform b and c) mRNA levels were determined in the vastus lateralis muscle by RT-PCR before exercise, immediately after, and 1, 2, 6, 24, and 48 h postexercise. Myogenin, MyoD, and MRF4 mRNA levels were elevated ( P < 0.005) by 100-400% 0-24 h postexercise. IGF-IEabc mRNA content decreased ( P < 0.005) by ∼44% after 1 and 6 h of recovery. The IGF-IEbc mRNA level was unaffected. The present study shows that myogenin, MyoD, and MRF4 mRNA levels are transiently elevated in human skeletal muscle after a single bout of heavy-resistance training, supporting the idea that the MRFs may be involved in regulating hypertrophy and/or fiber-type transitions. The results also suggest that IGF-IEa expression may be downregulated at the mRNA level during the initial part of recovery from resistance exercise.

2000 ◽  
Vol 279 (4) ◽  
pp. E806-E814 ◽  
Author(s):  
Henriette Pilegaard ◽  
George A. Ordway ◽  
Bengt Saltin ◽  
P. Darrell Neufer

Exercise training elicits a number of adaptive changes in skeletal muscle that result in an improved metabolic efficiency. The molecular mechanisms mediating the cellular adaptations to exercise training in human skeletal muscle are unknown. To test the hypothesis that recovery from exercise is associated with transcriptional activation of specific genes, six untrained male subjects completed 60–90 min of exhaustive one-legged knee extensor exercise for five consecutive days. On day 5, nuclei were isolated from biopsies of the vastus lateralis muscle of the untrained and the trained leg before exercise and from the trained leg immediately after exercise and after 15 min, 1 h, 2 h, and 4 h of recovery. Transcriptional activity of the uncoupling protein 3 (UCP3), pyruvate dehydrogenase kinase 4 (PDK4), and heme oxygenase-1 (HO-1) genes (relative to β-actin) increased by three- to sevenfold in response to exercise, peaking after 1–2 h of recovery. Increases in mRNA levels followed changes in transcription, peaking between 2 and 4 h after exercise. Lipoprotein lipase and carnitine pamitoyltransferase I gene transcription and mRNA levels showed similar but less dramatic induction patterns, with increases ranging from two- to threefold. In a separate study, a single 4-h bout of cycling exercise ( n = 4) elicited from 5 to >20-fold increases in UCP3, PDK4, and HO-1 transcription, suggesting that activation of these genes may be related to the duration or intensity of exercise. These data demonstrate that exercise induces transient increases in transcription of metabolic genes in human skeletal muscle. Moreover, the findings suggest that the cumulative effects of transient increases in transcription during recovery from consecutive bouts of exercise may represent the underlying kinetic basis for the cellular adaptations associated with exercise training.


2004 ◽  
Vol 287 (2) ◽  
pp. R397-R402 ◽  
Author(s):  
Lotte Jensen ◽  
Henriette Pilegaard ◽  
P. Darrell Neufer ◽  
Ylva Hellsten

The present study investigated the effect of an acute exercise bout on the mRNA response of vascular endothelial growth factor (VEGF) splice variants in untrained and trained human skeletal muscle. Seven habitually active young men performed one-legged knee-extensor exercise training at an intensity corresponding to ∼70% of the maximal workload in an incremental test five times/week for 4 wk. Biopsies were obtained from the vastus lateralis muscle of the trained and untrained leg 40 h after the last training session. The subjects then performed 3 h of two-legged knee-extensor exercise, and biopsies were obtained from both legs after 0, 2, 6, and 24 h of recovery. Real-time PCR was used to examine the expression of VEGF mRNA containing exon 1 and 2 (all VEGF isoforms), exon 6 or exon 7, and VEGF165mRNA. Acute exercise induced an increase ( P < 0.05) in total VEGF mRNA levels as well as VEGF165and VEGF splice variants containing exon 7 at 0, 2, and 6 h of recovery. The increase in VEGF mRNA was higher in the untrained than in the trained leg ( P < 0.05). The results suggest that in human skeletal muscle, acute exercise increases total VEGF mRNA, an increase that appears to be explained mainly by an increase in VEGF165mRNA. Furthermore, 4 wk of training attenuated the exercise-induced response in skeletal muscle VEGF165mRNA.


2000 ◽  
Vol 279 (2) ◽  
pp. H772-H778 ◽  
Author(s):  
R. S. Richardson ◽  
H. Wagner ◽  
S. R. D. Mudaliar ◽  
E. Saucedo ◽  
R. Henry ◽  
...  

Angiogenesis is a component of the multifactoral adaptation to exercise training, and vascular endothelial growth factor (VEGF) is involved in extracellular matrix changes and endothelial cell proliferation. However, there is limited evidence supporting the role of VEGF in the exercise training response. Thus we studied mRNA levels of VEGF, using quantitative Northern analysis, in untrained and trained human skeletal muscle at rest and after a single bout of exercise. Single leg knee-extension provided the acute exercise stimulus and the training modality. Four biopsies were collected from the vastus lateralis muscle at rest in the untrained and trained conditions before and after exercise. Training resulted in a 35% increase in muscle oxygen consumption and an 18% increase in number of capillaries per muscle fiber. At rest, VEGF/18S mRNA levels were similar before (0.38 ± 0.04) and after (1.2 ± 0.4) training. When muscle was untrained, acute exercise greatly elevated VEGF/18S mRNA levels (16.9 ± 6.7). The VEGF/18S mRNA response to acute exercise in the trained state was markedly attenuated (5.4 ± 1.3). These data support the concept that VEGF is involved in exercise-induced skeletal muscle angiogenesis and appears to be subject to a negative feedback mechanism as exercise adaptations occur.


2007 ◽  
Vol 103 (4) ◽  
pp. 1395-1401 ◽  
Author(s):  
Riikka Kivelä ◽  
Heikki Kyröläinen ◽  
Harri Selänne ◽  
Paavo V. Komi ◽  
Heikki Kainulainen ◽  
...  

High mechanical loading was hypothesized to induce the expression of angiogenic and/or lymphangiogenic extracellular matrix (ECM) proteins in skeletal muscle. Eight men performed a strenuous exercise protocol, which consisted of 100 unilateral maximal drop jumps followed by submaximal jumping until exhaustion. Muscle biopsies were taken 30 min and 48 h postexercise from the vastus lateralis muscle and analyzed for the following parameters: mRNA and protein expression of ECM-associated CCN proteins [cysteine-rich angiogenic protein 61 (Cyr61)/CCN1, connective tissue growth factor (CTGF)/CCN2], and mRNA expression of vascular endothelial growth factors (VEGFs) and hypoxia-inducible factor-1α. The mRNA expression of Cyr61 and CTGF increased 30 min after the exercise (14- and 2.5-fold, respectively; P < 0.001). Cyr61 remained elevated 48 h postexercise (threefold; P < 0.05). The mRNA levels of VEGF-A, VEGF-B, VEGF-C, VEGF-D, or hypoxia-inducible factor-1α did not change significantly at either 30 min or 48 h postexercise; however, the variation between subjects increased markedly in VEGF-A and VEGF-B mRNA. Cyr61 protein levels were higher at both 30 min and 48 h after the exercise compared with the control ( P < 0.05). Cyr61 and CTGF proteins were localized to muscle fibers and the surrounding ECM by immunohistochemistry. Fast fibers stained more intensively than slow fibers. In conclusion, mechanical loading induces rapid expression of CCN proteins in human skeletal muscle. This may be one of the early mechanisms involved in skeletal muscle remodeling after exercise, since Cyr61 and CTGF regulate the expression of genes involved in angiogenesis and ECM remodeling.


2009 ◽  
Vol 106 (4) ◽  
pp. 1419-1424 ◽  
Author(s):  
Maarit Lehti ◽  
Riikka Kivelä ◽  
Paavo Komi ◽  
Jyrki Komulainen ◽  
Heikki Kainulainen ◽  
...  

Eccentric exercise induced by electrostimulation increases mRNA expression of titin-complex proteins in rodent skeletal muscle. In this study, mRNA expression of titin, muscle LIM protein (MLP), cardiac ankyrin repeat protein (CARP), ankyrin repeat domain protein 2 (Ankrd2), diabetes-related ankyrin repeat protein (DARP), and calcium-activated proteinases, calpains, were investigated in human skeletal muscle after fatiguing jumping exercise. Fatiguing jumping exercise did not change mRNA expression of titin, DARP, calpain 1, or calpain 3. MLP, Ankrd2 and calpain 2 mRNA levels were increased 2 days postexercise. CARP mRNA level was already elevated 30 min and remained elevated 2 days postexercise. Increased mRNA expression of MLP, CARP, and Ankrd2, observed for the first time in human skeletal muscle, may be part of the signaling activated by physical exercise. The rapid increase in the level of CARP mRNA nominates CARP as one of the first genes to respond to exercise. The increase in the mRNA level of calpain 2 suggests its involvement in myofiber remodeling after strenuous jumping exercise.


2005 ◽  
Vol 289 (1) ◽  
pp. R84-R91 ◽  
Author(s):  
Nikolai Nordsborg ◽  
Martin Thomassen ◽  
Carsten Lundby ◽  
Henriette Pilegaard ◽  
Jens Bangsbo

The present study tested the hypothesis that exercise with a large compared with a small active muscle mass results in a higher contraction-induced increase in Na+-K+-ATPase mRNA expression due to greater hormonal responses. Furthermore, the relative abundance of Na+-K+-ATPase subunit α1, α2, α3, α4, β1, β2, and β3 mRNA in human skeletal muscle was investigated. On two occasions, eight subjects performed one-legged knee extension exercise (L) or combined one-legged knee extension and bilateral arm cranking (AL) for 5.00, 4.25, 3.50, 2.75, and 2.00 min separated by 3 min of rest. Leg exercise power output was the same in AL and L, but heart rate at the end of each exercise interval was higher in AL compared with L. One minute after exercise, arm venous blood lactate was higher in AL than in L. A higher level of blood epinephrine and norepinephrine was evident 3 min after exercise in AL compared with L. Nevertheless, none of the exercise-induced increases in α1, α2, β1, and β3 mRNA expression levels were higher in AL compared with L. The most abundant Na+-K+-ATPase subunit at the mRNA level was β1, which was expressed 3.4 times than α2. Expression of α1, β2, and β3 was less than 5% of the α2 expression, and no reliable detection of α3 and α4 was possible. In conclusion, activation of additional muscle mass does not result in a higher exercise-induced increase in Na+-K+-ATPase subunit-specific mRNA.


1999 ◽  
Vol 79 (4) ◽  
pp. 347-352 ◽  
Author(s):  
Kazumi Masuda ◽  
Jo Yoen Choi ◽  
Hitoshi Shimojo ◽  
Shigeru Katsuta

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Stefan Wette ◽  
Heather K Smith ◽  
Graham D. Lamb ◽  
Robyn M Murphy

Objective Power resistance exercise involves high intensity (load and velocity) dynamic muscular contractions and is frequently performed by athletes to enhance performance via improved muscle function. To investigate the remodelling processes that contribute to improved muscle function, we investigated the expression of putative mechanosensing genes implicated in this process (Kojic et al., 2011): titin-linked Muscle Ankyrin Repeat Protein (MARPs) family CARP, Ankrd 2 and DARP, and the Z-disc associated muscle-LIM protein (MLP) in healthy, resistance-trained men (n = 7) following 90 min of rest (Rest) or power resistance exercise, with (Ex + Meal) or without (Ex only) feeding during recovery. Methods Percutaneous needle biopsy samples were obtained from the vastus lateralis of resistance-trained males using local anesthetic (2% Xylocaine), 3 h after performing each of the three experimental trials on separate days. Previously, we presented results from this study showing that the mRNA levels of CARP (~15-fold) and MLP (~2.5-fold) were upregulated in human skeletal muscle 3 h post power resistance exercise (Wette et al., 2012). Based on these results, we performed protein analyses on the same muscle samples to determine the protein levels of all MARPs and MLP in whole muscle homogenates after Rest, Ex only and Ex + Meal. To assess whether the exercise elicited a stress response in these resistance-trained individuals, the level of phosphorylated heat shock protein 27 at serine 15 (pHSP27-Ser15) was measured at Rest and 3 h after Ex only and Ex + Meal. The levels of pHSP27-Ser15 are typically upregulated 3 h after eccentric exercise in human skeletal muscle (Frankenberg et al., 2014). Results The 90 min exercise session consisted of 180 intermittent muscular contractions at high intensity (70-96% maximal strength). Compared to Rest, there were ~5.8- and 12.6-fold increases in pHSP27-Ser15 levels at 3 h post Ex only and Ex + Meal (both P = 0.049, one-way ANOVA) respectively. CARP protein levels were elevated ~2.7-fold after Ex only (P = 0.049, one-way ANOVA) and ~7.6-fold after Ex + Meal (P = 0.326), due to markedly higher levels (6-40-fold) in three of the seven participants. Pearson correlation analysis revealed a significant positive correlation between the levels of pHSP27-Ser-15 and CARP protein (r = 0.56, P = 0.008). Ankrd 2, DARP and MLP protein levels were unchanged (all P > 0.05) following Ex only and Ex + Meal. Conclusions These findings indicate that CARP is highly responsive to increased mechanical loading because the protein levels in skeletal muscle can be substantially increased as early as 3 h after stressful resistance exercise. This suggests a specialised role for CARP protein during the early phases of muscle remodelling that occur as a consequence of performing high intensity resistance exercise.


2007 ◽  
Vol 35 (5) ◽  
pp. 1310-1311 ◽  
Author(s):  
T. Boonsong ◽  
L. Norton ◽  
K. Chokkalingam ◽  
K. Jewell ◽  
I. Macdonald ◽  
...  

SREBP-1c (sterol-regulatory-element-binding protein 1c) is a transcription factor that regulates genes associated with glucose and fatty acid metabolism and exhibits responsiveness to insulin and exercise. We have examined the effects of exercise on basal and insulin-mediated changes in the activation (phosphorylation) of the signalling molecules involved in the regulation of SREBP-1c and related them to changes in the expression of SREBP-1c in human skeletal muscle. Eight healthy men performed one-legged cycling for 90 min; 24 h later a hyperinsulinaemic euglycaemic clamp for 4 h was performed. Muscle biopsies were obtained from the rested (control) leg and the exercised leg immediately after exercise and before and after the insulin clamp. Immediately after exercise, phosphorylation of ERK (extracellular-signal-regulated kinase) 1, ERK2 and Akt (protein kinase B) was higher in the exercised than the control leg. SREBP-1c mRNA content was not affected by exercise, whereas its protein level was lower in the exercised than the control leg and returned to pre-exercise levels 24 h later. Similarly, SREBP-1c mRNA content was ∼1.5-fold higher in the exercised than the control leg 24 h after exercise. Insulin infusion up-regulated SREBP-1c mRNA level ∼2-fold, but did not affect its protein level. Phosphorylation of Akt also increased in response to insulin clamp, whereas phospho-ERK1 and -ERK2 levels were unchanged. Neither exercise nor insulin affected STAT3 (signal transducer and activator of transcription 3) or p38 MAPK (mitogen-activated protein kinase) phosphorylation. These findings suggest that exercise-induced changes in muscle SREBP-1c expression might be mediated by the activation of the ERK1/2 pathway, whereas Akt might be a positive regulator of SREBP-1c in human skeletal muscle under insulin-stimulated conditions.


Sign in / Sign up

Export Citation Format

Share Document